1
|
Fenclová T, Řimnáčová H, Chemek M, Havránková J, Klein P, Králíčková M, Nevoral J. Nursing Exposure to Bisphenols as a Cause of Male Idiopathic Infertility. Front Physiol 2022; 13:725442. [PMID: 35283775 PMCID: PMC8908107 DOI: 10.3389/fphys.2022.725442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Idiopathic infertility is a serious problem, which can be caused and explained by exposure to endocrine disruptors, such as bisphenols. In our study, we studied transactional exposure to bisphenol and its effects on newborn male mice throughout their reproductive life. Newborn male mice were exposed to bisphenol S and bisphenol F through maternal milk from post-natal day 0 to post-natal day 15 at concentrations of 0.1 ng.g/bw/day and 10 ng.g/bw/day, respectively. Although there were minimal differences between the control and experimental groups in testicular tissue quality and spermatozoa quality, we discovered an interesting influence on early embryonic development. Moderate doses of bisphenol negatively affected cleavage of the early embryo and subsequently, the blastocyst rate, as well as the number of blastomeres per blastocyst. In our study, we focused on correlations between particular stages from spermatogenesis to blastocyst development. We followed epigenetic changes such as dimethylation of histone H3 and phosphorylation of histone H2 from germ cells to blastocysts; we discovered the transfer of DNA double-strand breaks through the paternal pronucleus from spermatozoa to blastomeres in the blastocyst. We elucidated the impact of sperm DNA damage on early embryonic development, and our results indicate that idiopathic infertility in adulthood may have causes related to the perinatal period.
Collapse
Affiliation(s)
- Tereza Fenclová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- *Correspondence: Tereza Fenclová,
| | - Hedvika Řimnáčová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Marouane Chemek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jiřina Havránková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Pavel Klein
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Milena Králíčková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Jan Nevoral
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| |
Collapse
|
2
|
Zhu W, Jiang L, Pan C, Sun J, Huang X, Ni W. Deoxyribonucleic acid methylation signatures in sperm deoxyribonucleic acid fragmentation. Fertil Steril 2021; 116:1297-1307. [PMID: 34253331 DOI: 10.1016/j.fertnstert.2021.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/05/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate Deoxyribonucleic acid (DNA) methylation patterns in sperm from men with differential levels of sperm DNA fragmentation index (DFI). DESIGN Prospective study. SETTING University-affiliated reproductive medicine center. PATIENT(S) A total of 278 male patients consulting for couple infertility were recruited from the First Affiliated Hospital of Wenzhou Medical University. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Genome-wide DNA methylation analysis was performed using Infinium MethylationEPIC BeadChip on spermatozoal DNA from 20 male patients. Differentially methylated regions (DMRs) were identified and validated using targeted bisulfite amplicon sequencing in spermatozoal DNA from 266 males. RESULT(S) Unsupervised hierarchical clustering analysis revealed three main clusters corresponding to sperm DFI levels (low, medium, or high). Between-cluster comparisons identified 959 (medium-low), 738 (high-medium), and 937 (high-low) DMRs. Sixty-six DMRs were validated in the 266-sample cohort, of which nine CpG fragments corresponding to nine genes (BLCAP, DIRAS3, FAM50B, GNAS, MEST, TSPAN32, PSMA8, SYCP1, and TEX12) exhibited significantly altered methylation in those with high DFI (≥25%) compared with those with low DFI (<25%). CONCLUSION(S) We identified and validated a distinct DNA methylation signature associated with sperm DNA damage in a large, unselected cohort. These results indicate that sperm DNA damage may affect DNA methylation patterns in human sperm.
Collapse
Affiliation(s)
- Weijian Zhu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lei Jiang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chengshuang Pan
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Junhui Sun
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuefeng Huang
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wuhua Ni
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
3
|
Environmental pollutants exposure and male reproductive toxicity: The role of epigenetic modifications. Toxicology 2021; 456:152780. [PMID: 33862174 DOI: 10.1016/j.tox.2021.152780] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Male fertility rates have shown a progressive decrease in recent decades. There is a growing concern about the male reproductive dysfunction caused by environmental pollutants exposure, however the underlying molecular mechanisms are still not well understood. Epigenetic modifications play a key role in the biological responses to external stressors. Therefore, this review discusses the roles of epigenetic modifications in male reproductive toxicity induced by environmental pollutants, with a particular emphasis on DNA methylation, histone modifications and miRNAs. The available literature proposed that environmental pollutants can directly or cause oxidative stress and DNA damage to induce a variety of epigenetic changes, which lead to gene dysregulation, mitochondrial dysfunction and consequent male reproductive toxicity. However, future studies focusing on more kinds of epigenetic modifications and their crosstalk as well as epidemiological data are still required to fill in the current research gaps. In addition, the intrinsic links between pollutants-mediated epigenetic regulations and male reproduction-related physiological responses deserve to be further explored.
Collapse
|
4
|
Mitigating the Effects of Oxidative Sperm DNA Damage. Antioxidants (Basel) 2020; 9:antiox9070589. [PMID: 32640607 PMCID: PMC7402125 DOI: 10.3390/antiox9070589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/30/2022] Open
Abstract
Sperm DNA damage is correlated with reduced embryo development and increased miscarriage risk, reducing successful conception. Given its links with oxidative stress, antioxidants have been investigated as a potential treatment, yet results are conflicting. Importantly, individual antioxidants are not identical in composition, and some compounds may be more effective than others. We investigated the use of the polyphenol-rich, high-antioxidant-capacity fruit acai as a treatment for elevated sperm DNA fragmentation (>16%), measured by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Following ≥ 74 days of treatment, we observed a significant decrease in sperm DNA fragmentation (-17.0% ± 2.5%) to 11.9 ± 1.7% (0-37%), with a 68.6% success rate (defined as post-treatment TUNEL < 16%). Post-treatment decreases in DNA fragmentation and success rates were not significantly impacted by low motility and/or concentration, or exceptionally high (> 25%) TUNEL. Treatment significantly reduced concentration in men with normal semen parameters, but 88% remained normal. Overall, successful treatment was not associated with age, semen parameters or TUNEL result at baseline. However, body mass index was significantly higher in nonresponders at baseline. This study provides evidence of a low-cost, effective treatment for elevated sperm DNA damage using acai.
Collapse
|
5
|
Chioccarelli T, Pierantoni R, Manfrevola F, Porreca V, Fasano S, Chianese R, Cobellis G. Histone Post-Translational Modifications and CircRNAs in Mouse and Human Spermatozoa: Potential Epigenetic Marks to Assess Human Sperm Quality. J Clin Med 2020; 9:jcm9030640. [PMID: 32121034 PMCID: PMC7141194 DOI: 10.3390/jcm9030640] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatozoa (SPZ) are motile cells, characterized by a cargo of epigenetic information including histone post-translational modifications (histone PTMs) and non-coding RNAs. Specific histone PTMs are present in developing germ cells, with a key role in spermatogenic events such as self-renewal and commitment of spermatogonia (SPG), meiotic recombination, nuclear condensation in spermatids (SPT). Nuclear condensation is related to chromatin remodeling events and requires a massive histone-to-protamine exchange. After this event a small percentage of chromatin is condensed by histones and SPZ contain nucleoprotamines and a small fraction of nucleohistone chromatin carrying a landascape of histone PTMs. Circular RNAs (circRNAs), a new class of non-coding RNAs, characterized by a nonlinear back-spliced junction, able to play as microRNA (miRNA) sponges, protein scaffolds and translation templates, have been recently characterized in both human and mouse SPZ. Since their abundance in eukaryote tissues, it is challenging to deepen their biological function, especially in the field of reproduction. Here we review the critical role of histone PTMs in male germ cells and the profile of circRNAs in mouse and human SPZ. Furthermore, we discuss their suggested role as novel epigenetic biomarkers to assess sperm quality and improve artificial insemination procedure.
Collapse
|
6
|
Maciel VL, Tamashiro LK, Bertolla RP. Post-translational modifications of seminal proteins and their importance in male fertility potential. Expert Rev Proteomics 2019; 16:941-950. [PMID: 31726898 DOI: 10.1080/14789450.2019.1693895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: The seminal proteome has been shown to directly influence the male fertile potential. Post-translational modifications (PTMs) are significant changes that play a role in the biological regulation of proteins. Sperm cells are transcriptionally and translationally inactive and these modifications are essential to control protein function.Areas covered: Here we reviewed seven PTMs which importance for male reproductive function investigated in the past decade, namely S-nitrosylation and tyrosine nitration (both occurring by the action of NO), glycosylation, ubiquitination, acetylation, methylation, and SUMOylation. Since they were previously identified in human semen, we focus on their role in sperm function, as well as in physiological and pathophysiological processes which could contribute to the fertility potential. The following keywords were applied: 'post-translational modification', 'sperm', 'semen', 'seminal plasma', 'male infertility', 'nitrosylation', 'nitration', 'histone methylation', 'SUMOylation', 'ubiquitination', 'ubiquitilation', 'glycosylation', and 'acetylation'.Expert opinion: Most biological processes orchestrated by proteins require PTMs for their activation or inhibition. Most of them are dynamic and occur in mature sperm, modulating protein function, thus exerting a significant role in sperm function and fertility. Finally, the study of PTMs should be also addressed in pathophysiological processes, as different clinical conditions are known to alter the proteome.
Collapse
Affiliation(s)
- Valter Luiz Maciel
- Departamento de Cirurgia, Disciplina de Urologia, Centro de pesquisa em Urologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Letícia Kaory Tamashiro
- Departamento de Cirurgia, Disciplina de Urologia, Centro de pesquisa em Urologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo Pimenta Bertolla
- Departamento de Cirurgia, Disciplina de Urologia, Centro de pesquisa em Urologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Ghazifard A, Salehi M, Ghaffari Novin M, Bandehpour M, Keshavarzi S, Fallah Omrani V, Dehghani-Mohammadabadi M, Masteri Farahani R, Hosseini A. Anacardic Acid Reduces Acetylation of H4K12 in Mouse Oocytes during Vitrification. CELL JOURNAL 2018; 20:552-558. [PMID: 30124002 PMCID: PMC6099150 DOI: 10.22074/cellj.2019.5601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/06/2018] [Indexed: 11/10/2022]
Abstract
Objective Over the last years, vitrification has been widely used for oocyte cryopreservation, in animals and humans; however,
it frequently causes minor and major epigenetic modifications. The effect of oocyte vitrification on levels of acetylation of
histone H4 at lysine 12 (AcH4K12), and histone acetyltransferase (Hat) expression, was previously assessed; however, little is
known about the inhibition of Hat expression during oocyte vitrification. This study evaluated the effect of anacardic acid (AA)
as a Hat inhibitor on vitrified mouse oocytes.
Materials and Methods In this experimental study, 248 mouse oocytes at metaphase II (MII) stage were divided in three
experimental groups namely, fresh control oocytes (which were not affected by vitrification), frozen/thawed oocytes (vitrified)
and frozen/thawed oocytes pre-treated with AA (treatment). Out of 248 oocytes, 173 oocytes were selected and from them,
84 oocytes were vitrified without AA (vitrified group) and 89 oocytes were pretreated with AA, and then vitrified (treatment
group). Fresh MII mouse oocytes were used as control group. Hat expression and AcH4K12 levels were assessed by using
real-time quantitative polymerase chain reaction (PCR) and immunofluoresce staining, respectively. In addition, survival rate
was determined in vitrified and treatment oocytes.
Results Hat expression and AcH4K12 modification significantly increased [4.17 ± 1.27 (P≤0.001) and 97.57 ± 6.30
(P<0.001), respectively] in oocytes that were vitrified, compared to the fresh oocytes. After treatment with AA, the Hat
mRNA expression and subsequently H4K12 acetylation levels were significantly reduced [0.12 ± 0.03 (P≤0.001) and
89.79 ± 3.20 (P≤0.05), respectively] in comparison to the vitrified group. However, the survival rate was not significantly
different between the vitrified (90.47%) and treatment (91.01%) groups (P>0.05).
Conclusion The present study suggests that AA reduces vitrification risks caused by epigenetic modifications, but does not
affect the quality of vitrification. In fact, AA as a Hat inhibitor was effective in reducing the acetylation levels of H4K12.
Collapse
Affiliation(s)
- Alaleh Ghazifard
- Department of Reproductive Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.Electronic Address:
| | - Marefat Ghaffari Novin
- Department of Reproductive Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.Electronic Address:
| | - Somayeh Keshavarzi
- Department of Reproductive Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Fallah Omrani
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Masteri Farahani
- Department of Reproductive Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Hosseini
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic Address:
| |
Collapse
|
8
|
Affiliation(s)
- Neelam Potdar
- Leicester Fertility Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| |
Collapse
|