1
|
Al-Madhagi H, Tarabishi AA. Nutritional aphrodisiacs: Biochemistry and Pharmacology. Curr Res Food Sci 2024; 9:100783. [PMID: 38974844 PMCID: PMC11225857 DOI: 10.1016/j.crfs.2024.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
In 2022, the global prevalence of erectile dysfunction (ED) was estimated to be at least 150 million cases. This number is greatly suspected to be underestimate as most men withhold information about ED. Also, about 15% of world population have infertility troubles, and male factors are responsible for almost half of these cases. Studies have shown that the quality of semen has decreased in the past several decades owing to various health factors and environmental toxicants. The current medical interventions involve the inhibition of phosphodiesterase 5 which suffer from serious side effects and costly. One of the popular and most sought interventions are the natural and nutritional remedies as they are foods in essence and potentially with no harm to the body. Therefore, the goal of this paper is to provide a review of the most common nutritional aphrodisiacs with increasing libido and fertility highlighting the potential active constituents as well as the underlying mechanisms.
Collapse
|
2
|
Almujaydil MS, Algheshairy RM, Alhomaid RM, Alharbi HF, Ali HA. Nigella sativa-Floral Honey and Multi-Floral Honey versus Nigella sativa Oil against Testicular Degeneration Rat Model: The Possible Protective Mechanisms. Nutrients 2023; 15:nu15071693. [PMID: 37049533 PMCID: PMC10096533 DOI: 10.3390/nu15071693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The male reproductive function, particularly the testes, and the related hormones are sensitive to various xenobiotics. This work aimed for the first time to assess Nigella sativa floral honey (NS floral honey) and multi-floral honey (M-floral honey) versus Nigella sativa oil (NS oil) against rat testicular degeneration induced with azathioprine (AZA). A total of 40 male Wister rats were assigned into 5 groups: (1) control, (2) 15 mg/kg of AZA, (3) AZA + 1.4 mL/kg of M-floral honey, (4) AZA + 1.4 mL/kg of NS floral honey, and (5) AZA + 500 mg/kg of NA oil. Total testosterone (TT), free testosterone (FT), free androgen index (FAI), gonadotrophins, sex-hormone-binding globulin (SHBG), apoptosis markers, and redox status were assessed to clarify the possible protective mechanisms. Pituitary–testicular axis disruption, apoptosis markers, poor redox status, and sperm quality (count, viability, and motility) were set with AZA. Serum TT, SHBG, and absolute and relative testis weight were significantly restored in the NS oil and NS floral honey groups. Meanwhile, the NS oil group exhibited a significant elevation in FT and FAI. Serum gonadotrophins increased significantly in the NS floral honey (p < 0.01) and M-floral honey and NS oil (p < 0.05) groups. Testicular caspase-3, caspase-9, and nitric oxide showed significant improvement in the NS floral honey and NS oil groups. NS oil supplementation significantly normalized redox status (p < 0.05), whereas NS floral honey improved malondialdehyde and superoxide dismutase activity. Sperm quality exhibited a significant improvement in the NS oil group (p < 0.05). M-floral honey did not show reliable results. Although NS floral honey could protect against testicular damage, it did not upgrade to the level of improvement achieved with NS oil. We claim that further clinical studies are essential for focusing on the quality and quantity of bioactive constituents.
Collapse
|
3
|
Heidarizadi S, Rashidi Z, Jalili C, Gholami M. Overview of biological effects of melatonin on testis: A review. Andrologia 2022; 54:e14597. [PMID: 36168927 DOI: 10.1111/and.14597] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Infertility is a major global health issue and male factors account for half of all infertility cases. One of the causes of male infertility is the loss of spermatogonial stem cells, which may occur because of chemotherapy, radiotherapy or genetic defects. In numerous animal species, the evidence suggests the pineal gland and melatonin secretion in their reproductive activities are involved. Recently, considerable attention has pointed to the usage of melatonin in the treatment of diseases. Melatonin is associated with the regulation of circadian and seasonal rhythmic functions, immune system functions, retinal physiology, spermatogenesis and inhibition of tumour growth in different species. Several studies demonstrated that melatonin acts as an anti-apoptotic, anti-inflammatory, anticancer and antioxidant agent. Melatonin can also protect testicles and spermatogonia against oxidative damage, chemotherapy drugs, environmental radiation, toxic substances, hyperthermia, ischemia/reperfusion, diabetes-induced testicular damage, metal-induced testicular toxicity, improve sperm quality and it affects the testosterone secretion pathway by affecting Leydig cells. Therefore, the objective of this study is to investigate the biological effects of melatonin as a natural antioxidant on testicles and their disorders.
Collapse
Affiliation(s)
- Somayeh Heidarizadi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Rashidi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadreza Gholami
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Balci CN, Firat T, Acar N, Kukner A. Carvacrol treatment opens Kir6.2 ATP-dependent potassium channels and prevents apoptosis on rat testis following ischemia-reperfusion injury model. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 62:179-190. [PMID: 34609420 PMCID: PMC8597367 DOI: 10.47162/rjme.62.1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Testicular torsion is a urological problem that causes subfertility and testicular damage in males. Testis torsion and detorsion lead to ischemia–reperfusion (IR) injury in the testis. Testicular IR injury causes the increase of reactive oxygen species (ROS), oxidative stress (OS) and germ cell-specific apoptosis. In this study, we aimed to investigate whether Carvacrol has a protective effect on testicular IR injury and its effects on Kir6.2 channels, which is a member of adenosine triphosphate (ATP)-dependent potassium channels. In the study, 2–4 months old 36 albino Wistar rats were used. For experimental testicular IR model, the left testis was rotated counterclockwise at 720° for two hours, and after two hours following torsion, detorsion was performed. Carvacrol was dissolved in 5% Dimethyl Sulfoxide (DMSO) at a dose of 73 mg/kg and half an hour before detorsion, 0.2 mL was administered intraperitoneally. In testicular tissues, caspase 3 and Kir6.2 immunoexpressions were examined. Serum malondialdehyde (MDA) and testosterone levels were measured. Apoptotic cells and serum MDA levels were significantly decreased and Kir6.2 activation was significantly increased in Carvacrol-administrated IR group. As a result of our study, Carvacrol may activates Kir6.2 channels and inhibits apoptosis and may have a protective effect on testicular IR injury.
Collapse
Affiliation(s)
- Cemre Nur Balci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey;
| | | | | | | |
Collapse
|
5
|
Zaid SSM, Ruslee SS, Mokhtar MH. Protective Roles of Honey in Reproductive Health: A Review. Molecules 2021; 26:molecules26113322. [PMID: 34205972 PMCID: PMC8197897 DOI: 10.3390/molecules26113322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
Nowadays, most people who lead healthy lifestyles tend to use natural products as supplements, complementary medicine or alternative treatments. Honey is God's precious gift to mankind. Honey has been highly appreciated and extensively used since ancient history due to its high nutritional and therapeutic values. It is also known to enhance fertility. In the last few decades, the important role of honey in modern medicine has been acknowledged due to the large body of convincing evidence derived from extensive laboratory studies and clinical investigations. Honey has a highly complex chemical and biological composition that consists of various essential bioactive compounds, enzymes, amino and organic acids, acid phosphorylase, phytochemicals, carotenoid-like substances, vitamins and minerals. Reproductive health and fertility rates have declined in the last 30 years. Therefore, this review aimed to highlight the protective role of honey as a potential therapeutic in maintaining reproductive health. The main role of honey is to enhance fertility and treat infertility problems by acting as an alternative to hormone replacement therapy for protecting the vagina and uterus from atrophy, protecting against the toxic effects of xeno-oestrogenic agents on female reproductive functions and helping in the treatment of gynaecological disorders, such as vulvovaginal candidiasis infection, that affect women's lives.
Collapse
Affiliation(s)
- Siti Sarah Mohamad Zaid
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Correspondence: ; Tel.: +60-3-9769-6742
| | - Siti Suraya Ruslee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
6
|
Choopani R, Athari S, Lorian K, Kashafroodi H, Ghafarzadeh S. Protective effects of honey compound syrup on busulfan-induced azoospermia in male rats. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2021. [DOI: 10.4103/2305-0500.331266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Abbaszadeh A, Assadollahi V, Alasvand M, Anbari K, Tavakoli N, Gholami M. Protective effects of royal jelly on testicular torsion induced ischaemia reperfusion injury in rats. Andrologia 2020; 52:e13716. [DOI: 10.1111/and.13716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Abolfazl Abbaszadeh
- Department of Surgery Razi Herbal Medicines Research Center Lorestan University of Medical Sciences Khorramabad Iran
| | - Vahideh Assadollahi
- Cancer and Immunology Research Center Research Institute for Health Development Kurdistan University of Medical Sciences Sanandaj Iran
| | - Masoud Alasvand
- Cancer and Immunology Research Center Research Institute for Health Development Kurdistan University of Medical Sciences Sanandaj Iran
| | - Khatereh Anbari
- Department of Social Medicine Lorestan University of Medical Sciences Khorramabad Iran
| | - Negin Tavakoli
- Student Research Committee Lorestan University of Medical Sciences Khorramabad Iran
| | - Mohammadreza Gholami
- Medical Biology Research Center Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
8
|
Banihani SA. Mechanisms of honey on testosterone levels. Heliyon 2019; 5:e02029. [PMID: 31321328 PMCID: PMC6612531 DOI: 10.1016/j.heliyon.2019.e02029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/11/2019] [Accepted: 06/28/2019] [Indexed: 01/20/2023] Open
Abstract
Testosterone is an anabolic steroid and the principal sex hormone in males. Maintaining adequate levels of testosterone throughout the life span of male is very desirable, especially it is now well-known that low levels of testosterone is associated with various aging diseases/disorders. Therefore, still, so many research studies have focused on enhancing serum levels of testosterone in males. Here, we intended to systematically discuss and present the impact of honey on serum levels of testosterone in males. This was conducted by searching PubMed, Scopus, and Embase electronic databases for research articles from May 1993 through April 2019 using the keywords “honey” and “honeybee” versus “testosterone”. Moreover, references from relevant published articles were also reviewed and cited to frame an integral discussion, conclusion, and future research needs. In conclusion, the collective evidence, which is mainly based on in vivo system studies, reveals that oral administration of honey increases serum testosterone level in males. Mechanistically, honey may increase serum level of testosterone by increasing the production of luteinizing hormone, enhancing the viability of Leydig cells, reducing oxidative damage in Leydig cells, enhancing StAR gene expression, and inhibiting aromatase activity in the testes. However, further research studies on humans, mainly clinical trials, in this specific research approach are still needed to confirm the effect of honey on testosterone.
Collapse
Affiliation(s)
- Saleem Ali Banihani
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
9
|
Doğanyiğit Z, Silici S, Demirtaş A, Kaya E, Kaymak E. Determination of histological, immunohistochemical and biochemical effects of acute and chronic grayanotoxin III administration in different doses in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1323-1335. [PMID: 30426365 DOI: 10.1007/s11356-018-3700-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Grayanotoxin (GTX)-III is a Na-channel neurotoxin. Grayanotoxins can be found in the nectar, pollen, and other plant parts of the Rhododendron genus plants from the Ericaceae family. It is widely believed that honey produced from these plants, which are concentrated in the Black Sea region, is traditionally characterized as enhancing sexual performance. It is thought that the effective factor is dose for this compound, which has both beneficial and toxic effects reported. Therefore, it is aimed to evaluate the histological, immunohistochemical, and biochemical effects of acute and chronic impact of GTX-III in different doses on testes tissue in this study. For this purpose, 100 Sprague-Dawley male rats were divided into 5 separate groups for acute and chronic research. While dose groups were (control, 0.1, 0.2, 0.4, ve 0.8 μg/kg/bw) for experimental groups, a single dose (i.p.) was administered for acute impact whereas the same doses were administered daily for 3 weeks to assess chronic effect. At the end of the experiment, Johnsen testicular biopsy scoring was performed on testicular tissue samples, seminiferous tubule diameters were measured, and apoptotic cells were evaluated by TUNEL method. Testosterone, LH, and FSH levels were measured by ELISA method in serum and tissue specimens. It was found that Johnsen score of acute doses was significantly lower than the control group, and the diameter of the seminiferous tubules decreased significantly in acute and chronic dose-administered groups compared to the control. Hemorrhage, epithelial shedding, irregularity in seminiferous epithelium, and vacuolization were observed in acute and chronic dose-administered groups, and increase in apoptotic cells was determined. Hormone levels varied depending on the dose. In conclusion, it was found that dose-dependent acute and chronic effects of GTX-III are different, and this factor should be taken into account in studies to be carried out due to the adverse effects of high doses.
Collapse
Affiliation(s)
- Züleyha Doğanyiğit
- Faculty of Medicine Histology-Embryology Department, Bozok University, Yozgat, Turkey
| | - Sibel Silici
- Seyrani Agricultural Faculty Agricultural Biotechnology Department, Erciyes University, Kayseri, Turkey.
| | - Abdullah Demirtaş
- Faculty of Medicine Urology Department, Erciyes University, Kayseri, Turkey
| | - Ertuğrul Kaya
- Faculty of Medicine Pharmacology Department, Düzce University, Düzce, Turkey
| | - Emin Kaymak
- Faculty of Medicine Histology-Embryology Department, Bozok University, Yozgat, Turkey
| |
Collapse
|
10
|
Kheirollahi A, Abbaszadeh A, Anbari K, Rostami B, Ahangari A, Hasanvand A, Gholami M. Troxerutin protect sperm, seminiferous epithelium and pituitary-gonadal axis from torsion-detorsion injury: An experimental study. Int J Reprod Biomed 2018. [DOI: 10.29252/ijrm.16.5.315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|