1
|
Ma N, Luo X, Wang J, Sun S, Liang R, Zhang Z, Cheng Z, Wang J, Ma Y. Inner Mitochondrial Membrane Peptidase 2-Like Deletion Aggravates Mitochondrial Apoptosis and Inhibits Autophagy After Hyperglycemia Stroke. Mol Neurobiol 2024:10.1007/s12035-024-04479-9. [PMID: 39271625 DOI: 10.1007/s12035-024-04479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
This study investigated the effects of inner mitochondrial membrane peptidase 2-like (Immp2l) deletion on mitochondrial apoptosis and mitochondrial autophagy under hyperglycemic conditions. The middle cerebral artery occlusion (MCAO) model was established in wild-type (WT) mice and Immp2l+/- mice; animals were then exposed to hyperglycemic (induced using 1% streptozotocin) and normoglycemic conditions. Tissues were collected at various time points post-reperfusion. The production of reactive oxygen species (ROS) was assessed by fluorescent measurements, and mitochondrial membrane potential was evaluated using a JC-1 assay kit. Autophagy was analyzed by measuring LC3II/LC3I protein expression and Beclin 1 expression. Mitochondrial ultrastructure was examined through transmission electron microscopy (TEM); neuronal autophagosomes were also assessed. Immp2l mutation in a hyperglycemic environment exacerbated brain injury by increasing ROS production, compromising mitochondrial membrane potential, inducing apoptotic cascades, and impairing mitochondrial autophagy. These findings highlight the critical role of Immp2l in modulating the response to hyperglycemic cerebral ischemia-reperfusion (I/R) injury. Furthermore, the deficiency of Immp2l appears to contribute to increased oxidative stress, mitochondrial dysfunction, and cell death, thereby exacerbating brain injury. These data may provide new insights into therapeutic strategies for reducing the impact of diabetes on stroke outcomes.
Collapse
Affiliation(s)
- Ning Ma
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaohong Luo
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianan Wang
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Shihui Sun
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Ruimin Liang
- Department of Pathology, Beijing Hightrust Diagnostics, Co, Ltd, Beijing, 102600, China
| | - Zijing Zhang
- Department of Anesthesiology, Ningxia Chinese Medicine Research Center, Yinchuan, 750004, China
| | - Zhengyi Cheng
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, China
| | - Jinlian Wang
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Yi Ma
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China.
- Department of Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
2
|
Lawther AJ, Zieba J, Fang Z, Furlong TM, Conn I, Govindaraju H, Choong LLY, Turner N, Siddiqui KS, Bridge W, Merlin S, Hyams TC, Killingsworth M, Eapen V, Clarke RA, Walker AK. Antioxidant Behavioural Phenotype in the Immp2l Gene Knock-Out Mouse. Genes (Basel) 2023; 14:1717. [PMID: 37761857 PMCID: PMC10531238 DOI: 10.3390/genes14091717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondrial dysfunction is strongly associated with autism spectrum disorder (ASD) and the Inner mitochondrial membrane protein 2-like (IMMP2L) gene is linked to autism inheritance. However, the biological basis of this linkage is unknown notwithstanding independent reports of oxidative stress in association with both IMMP2L and ASD. To better understand IMMP2L's association with behaviour, we developed the Immp2lKD knockout (KO) mouse model which is devoid of Immp2l peptidase activity. Immp2lKD -/- KO mice do not display any of the core behavioural symptoms of ASD, albeit homozygous Immp2lKD -/- KO mice do display increased auditory stimulus-driven instrumental behaviour and increased amphetamine-induced locomotion. Due to reports of increased ROS and oxidative stress phenotypes in an earlier truncated Immp2l mouse model resulting from an intragenic deletion within Immp2l, we tested whether high doses of the synthetic mitochondrial targeted antioxidant (MitoQ) could reverse or moderate the behavioural changes in Immp2lKD -/- KO mice. To our surprise, we observed that ROS levels were not increased but significantly lowered in our new Immp2lKD -/- KO mice and that these mice had no oxidative stress-associated phenotypes and were fully fertile with no age-related ataxia or neurodegeneration as ascertained using electron microscopy. Furthermore, the antioxidant MitoQ had no effect on the increased amphetamine-induced locomotion of these mice. Together, these findings indicate that the behavioural changes in Immp2lKD -/- KO mice are associated with an antioxidant-like phenotype with lowered and not increased levels of ROS and no oxidative stress-related phenotypes. This suggested that treatments with antioxidants are unlikely to be effective in treating behaviours directly resulting from the loss of Immp2l/IMMP2L activity, while any behavioural deficits that maybe associated with IMMP2L intragenic deletion-associated truncations have yet to be determined.
Collapse
Affiliation(s)
- Adam J. Lawther
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Jerzy Zieba
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Department of Psychology, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Zhiming Fang
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
| | - Teri M. Furlong
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Illya Conn
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Hemna Govindaraju
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Laura L. Y. Choong
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Khawar Sohail Siddiqui
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wallace Bridge
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sam Merlin
- Medical Science, School of Science, Western Sydney University, Campbelltown, Sydney, NSW 2751, Australia
| | - Tzipi Cohen Hyams
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
| | - Murray Killingsworth
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- NSW Health Pathology, Liverpool Hospital Campus, 1 Campbell Street, Liverpool, NSW 2107, Australia
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Raymond A. Clarke
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Adam K. Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
3
|
Burke ND, Nixon B, Roman SD, Schjenken JE, Walters JLH, Aitken RJ, Bromfield EG. Male infertility and somatic health - insights into lipid damage as a mechanistic link. Nat Rev Urol 2022; 19:727-750. [PMID: 36100661 DOI: 10.1038/s41585-022-00640-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Over the past decade, mounting evidence has shown an alarming association between male subfertility and poor somatic health, with substantial evidence supporting the increased incidence of oncological disease, cardiovascular disease, metabolic disorders and autoimmune diseases in men who have previously received a subfertility diagnosis. This paradigm is concerning, but might also provide a novel window for a crucial health reform in which the infertile phenotype could serve as an indication of potential pathological conditions. One of the major limiting factors in this association is the poor understanding of the molecular features that link infertility with comorbidities across the life course. Enzymes involved in the lipid oxidation process might provide novel clues to reconcile the mechanistic basis of infertility with incident pathological conditions. Building research capacity in this area is essential to enhance the early detection of disease states and provide crucial information about the disease risk of offspring conceived through assisted reproduction.
Collapse
Affiliation(s)
- Nathan D Burke
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
- Priority Research Centre for Drug Development, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Jessica L H Walters
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia.
- Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
4
|
Escada-Rebelo S, Cristo MI, Ramalho-Santos J, Amaral S. Mitochondria-Targeted Compounds to Assess and Improve Human Sperm Function. Antioxid Redox Signal 2022; 37:451-480. [PMID: 34847742 DOI: 10.1089/ars.2021.0238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Currently 10%-15% of couples in reproductive age face infertility issues. More importantly, male factor contributes to 50% of these cases (either alone or in combination with female causes). Among various reasons, impaired sperm function is the main cause for male infertility. Furthermore, mitochondrial dysfunction and oxidative stress due to increased reactive oxygen species (ROS) production, particularly of mitochondrial origin, are believed to be the main contributors. Recent Advances: Mitochondrial dysfunction, particularly due to increased ROS production, has often been linked to impaired sperm function/quality. For decades, different methods and approaches have been developed to assess mitochondrial features that might correlate with sperm functionality. This connection is now completely accepted, with mitochondrial functionality assessment used more commonly as a readout of sperm functionality. More recently, mitochondria-targeted compounds are on the frontline for both assessment and therapeutic approaches. Critical Issues: In this review, we summarize the current methods for assessing key mitochondrial parameters known to reflect sperm quality as well as therapeutic strategies using mitochondria-targeted antioxidants aiming to improve sperm function in various situations, particularly after sperm cryopreservation. Future Directions: Although more systematic research is needed, mitochondria-targeted compounds definitely represent a promising tool to assess as well as to protect and improve sperm function. Antioxid. Redox Signal. 37, 451-480.
Collapse
Affiliation(s)
- Sara Escada-Rebelo
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| | - Maria Inês Cristo
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sandra Amaral
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Coenzyme Q 10 Analogues: Benefits and Challenges for Therapeutics. Antioxidants (Basel) 2021; 10:antiox10020236. [PMID: 33557229 PMCID: PMC7913973 DOI: 10.3390/antiox10020236] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/31/2023] Open
Abstract
Coenzyme Q10 (CoQ10 or ubiquinone) is a mobile proton and electron carrier of the mitochondrial respiratory chain with antioxidant properties widely used as an antiaging health supplement and to relieve the symptoms of many pathological conditions associated with mitochondrial dysfunction. Even though the hegemony of CoQ10 in the context of antioxidant-based treatments is undeniable, the future primacy of this quinone is hindered by the promising features of its numerous analogues. Despite the unimpeachable performance of CoQ10 therapies, problems associated with their administration and intraorganismal delivery has led clinicians and scientists to search for alternative derivative molecules. Over the past few years, a wide variety of CoQ10 analogues with improved properties have been developed. These analogues conserve the antioxidant features of CoQ10 but present upgraded characteristics such as water solubility or enhanced mitochondrial accumulation. Moreover, recent studies have proven that some of these analogues might even outperform CoQ10 in the treatment of certain specific diseases. The aim of this review is to provide detailed information about these Coenzyme Q10 analogues, as well as their functionality and medical applications.
Collapse
|
6
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
7
|
Liu C, Gu J, Ma W, Zhang Q, Song M, Ha L, Xu X, Jiao H, Huo Z. Lycium barbarum polysaccharide protects against ethanol-induced spermiotoxicity and testicular degeneration in Immp2l +/- mice. Andrologia 2020; 52:e13554. [PMID: 32141651 DOI: 10.1111/and.13554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/08/2020] [Accepted: 01/31/2020] [Indexed: 01/05/2023] Open
Abstract
Studies have indicated that high levels of ethanol exposure impaired spermatogenesis in mice. However, the effects of chronic and low-dose alcohol consumption on susceptible populations remain unclear. The previous studies have confirmed that Immp2l mutant mice (Immp2lTg(Tyr)979Ove or Immp2l-/- ) suffered from increased levels of oxidative stress(OS) and male infertility, heterozygous lmmp2l mice (Immp2l+/- ) showed no altered ROS levels under physiological condition. Lycium barbarum polysaccharide (LBP) significantly scavenge oxygen free radicals and enhance antioxidant enzyme activity. The objectives of present study were to research the effects of chronic and low-dose alcohol-induced damage on Immp2l+/- , explore the protective function of LBP and possible mechanism. The results indicated that chronic ethanol exposure leads to spermatogenic impairment and triggered a toxic effect on germ cell, 10 mg/kg LBP administration improved the quality of spermatozoon, decreased the ratio of apoptotic germ cells and the expression of Col1a1 and Col1a2, while increased the level of TNP2 and RPL31. In conclusion, the study may provide basic knowledge about LBP's important role against ethanol-induced spermiotoxicity and testicular degeneration in Immp2l+/- mice, and the mechanism may be that LBP influenced the state of the spermatogenic epithelium by decreasing the expression of Collagen level leading to alterations in protein biosynthesis during the process of spermatogenesis.
Collapse
Affiliation(s)
- Chunlian Liu
- The General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Genetic and Cell Biology, Ningxia Medical University, Yinchuan, Ningxia, China.,Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Jiwei Gu
- The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wenqian Ma
- The General Hospital of Ningxia Medical University, Yinchuan, China.,Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Qian Zhang
- The General Hospital of Ningxia Medical University, Yinchuan, China.,Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Mengling Song
- The General Hospital of Ningxia Medical University, Yinchuan, China.,Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Lingxia Ha
- The General Hospital of Ningxia Medical University, Yinchuan, China.,Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xian Xu
- The General Hospital of Ningxia Medical University, Yinchuan, China.,Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Haiyan Jiao
- Department of Genetic and Cell Biology, Ningxia Medical University, Yinchuan, Ningxia, China.,Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Zhenghao Huo
- Department of Genetic and Cell Biology, Ningxia Medical University, Yinchuan, Ningxia, China.,Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|