1
|
Sung WW, Yeh TM, Shih WL. Additive effect of clove essential oil combined with hydrogen inhalation improves psychological harm caused by lipopolysaccharide in mice. BMC Complement Med Ther 2024; 24:399. [PMID: 39548524 PMCID: PMC11566159 DOI: 10.1186/s12906-024-04682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 10/17/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Psychological anxiety and depression, as well as memory impairment, are frequently linked to inflammation. Clove essential oil (CEO) administration and hydrogen (H2) inhalation have been proven to have anti-inflammatory and alleviating effects on related psychological disorders in the past. The current study investigated the potential to improve anxiety-like behaviors and cognitive function by a combination of CEO and H2 treatment. METHODS The mice were administered lipopolysaccharide (LPS) to induce inflammation and oxidative stress response and cause psychological disorders. Using this animal model, we conducted experiments to test whether essential oil and H2 inhalation could improve the psychological damage in behavior caused by LPS. Subsequently, elevated plus maze (EPM), forced swimming test (FST), and passive avoidance (PA) test were performed for evaluation of mice anxiety, depression, and response to electric shock, respectively. Furthermore, the biochemical analysis was used to examine the expression levels of inflammatory and oxidative stress markers. RESULTS Our results showed that CEO administration and H2 inhalation alone or in combination positively improved inflammation-induced anxiety, depression, and cognitive memory deficits in the mice. In the single treatment groups, CEO demonstrated better results than H2 inhalation in the elevated plus maze, forced swimming, and passive avoidance tests, while combined treatment with both provided a further improved enhancement effect. Biochemical analysis of the cerebral cortex revealed that CEO and H2 therapy reversed the LPS-induced inflammation and oxidative stress response. CONCLUSIONS Our results suggest that a combination of CEO and H2 has the potential to treat psychological disorders or neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wei-Wen Sung
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Tsung-Ming Yeh
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Wen-Ling Shih
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan.
| |
Collapse
|
2
|
Upadhyay VR, Roy AK, Pandita S, Raval K, Patoliya P, Ramesh V, Dewry RK, Yadav HP, Mohanty TK, Bhakat M. Optimized addition of nitric oxide compounds in semen extender improves post-thaw seminal attributes of Murrah buffaloes. Trop Anim Health Prod 2023; 55:47. [PMID: 36702975 DOI: 10.1007/s11250-023-03474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023]
Abstract
Semen dilution and cryopreservation alter the homogeneity of seminal plasma, resulting in a non-physiological redox milieu and consequently poor sperm functionality. Considering the concentration-specific bimodal action of nitric oxide (NO) in the regulation of sperm functions, cryopreservation media supplemented with optimized concentrations can improve the semen attributes. The present study aimed to evaluate the effect of adding an optimized concentration of sodium nitroprusside (SNP) and N-nitro-L-arginine methyl ester (L-NAME) in an extender on in vitro semen quality. An aliquot of semen samples (n = 32) from Murrah buffalo bulls (n = 8) was divided into control (C) and treatment (T-I: SNP in extender at 1 µmol/L; T-II: L-NAME in extender at 10 µmol/L). Fresh semen quality parameters showed no significant difference at 0 h except for the structural integrity in the T-II group. Post-thaw semen quality parameters and sperm kinematics using computer-aided sperm analysis (CASA) revealed significantly higher (p < 0.05) cryoresistance in the treatment groups. Viability, acrosome integrity, and membrane integrity were significantly higher (p < 0.05) in both treatment groups; however, the results were pervasive in T-II. Lower abnormal spermatozoa were observed in both T-I and T-II. SNP supplementation led to a significant rise (p < 0.05) in NO, whereas L-NAME reduced the NO concentration in post-thawed samples, which was directly correlated with different sperm functionality and associated biomarkers viz. total antioxidant capacity (TAC) and thiobarbituric acid reactive substance (TBARS). It was concluded that the cryopreservation media supplemented with SNP and L-NAME at 1 µmol/L and 10 µmol/L, respectively, lower the cryo-damage and improve post-thaw seminal attributes.
Collapse
Affiliation(s)
- Vishwa Ranjan Upadhyay
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - A K Roy
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sujata Pandita
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Kathan Raval
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Priyanka Patoliya
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikram Ramesh
- Animal Reproduction and Gynaecology, ICAR-National Research Center on Mithun, Medziphema, India
| | - Raju Kr Dewry
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Hanuman P Yadav
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - T K Mohanty
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Mukesh Bhakat
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
3
|
de Oliveira LRM, de Aquino LVC, Santos MVDO, Freitas VJDF, Bertini LM, Pereira AF. Antioxidant effect of bioactive compounds isolated from Syzygium aromaticum essential oil on the in vitro developmental potential of bovine oocytes. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Amir Rawa MS, Mazlan MKN, Ahmad R, Nogawa T, Wahab HA. Roles of Syzygium in Anti-Cholinesterase, Anti-Diabetic, Anti-Inflammatory, and Antioxidant: From Alzheimer's Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:1476. [PMID: 35684249 PMCID: PMC9183156 DOI: 10.3390/plants11111476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) causes progressive memory loss and cognitive dysfunction. It is triggered by multifaceted burdens such as cholinergic toxicity, insulin resistance, neuroinflammation, and oxidative stress. Syzygium plants are ethnomedicinally used in treating inflammation, diabetes, as well as memory impairment. They are rich in antioxidant phenolic compounds, which can be multi-target neuroprotective agents against AD. This review attempts to review the pharmacological importance of the Syzygium genus in neuroprotection, focusing on anti-cholinesterase, anti-diabetic, anti-inflammatory, and antioxidant properties. Articles published in bibliographic databases within recent years relevant to neuroprotection were reviewed. About 10 species were examined for their anti-cholinesterase capacity. Most studies were conducted in the form of extracts rather than compounds. Syzygium aromaticum (particularly its essential oil and eugenol component) represents the most studied species owing to its economic significance in food and therapy. The molecular mechanisms of Syzygium species in neuroprotection include the inhibition of AChE to correct cholinergic transmission, suppression of pro-inflammatory mediators, oxidative stress markers, RIS production, enhancement of antioxidant enzymes, the restoration of brain ions homeostasis, the inhibition of microglial invasion, the modulation of ß-cell insulin release, the enhancement of lipid accumulation, glucose uptake, and adiponectin secretion via the activation of the insulin signaling pathway. Additional efforts are warranted to explore less studied species, including the Australian and Western Syzygium species. The effectiveness of the Syzygium genus in neuroprotective responses is markedly established, but further compound isolation, in silico, and clinical studies are demanded.
Collapse
Affiliation(s)
- Mira Syahfriena Amir Rawa
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| | - Mohd Khairul Nizam Mazlan
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
| | - Rosliza Ahmad
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
| | - Toshihiko Nogawa
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, Technology Platform Division, 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Habibah A. Wahab
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| |
Collapse
|
5
|
Bahmanpour S, Keshavarz M, Koohpeyma F, Badr P, Noori A, Dabbaghmanesh MH, Poordast T, Najib FS, Zare N, Namazi N, Jahromi BN. Preserving effect of Loboob (a traditional multi-herbal formulation) on sperm parameters of male rats with busulfan-induced subfertility. JBRA Assist Reprod 2022; 26:574-582. [PMID: 34995049 PMCID: PMC9635600 DOI: 10.5935/1518-0557.20210099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Male infertility secondary to exposure to gonadotoxic agents during reproductive age is a concerning issue. The aim of this experimental study was to determine the effect of Loboob on sperm parameters. METHODS 55 healthy rats were selected, weighted and divided into five groups consisting of 11 rats each. The control group received no medication. Rats in Treatment Group 1 received 10mg/kg Busulfan and rats in Treatment Groups 2, 3, and 4 received 35,70 and 140 mg/kg Loboob respectively in addition to 10mg/kg Busulfan. Finally, the sperm parameters and weights of the rats were compared using the Kolmogorov-Smirnov, non-parametric Kruskal-Wallis, and Dunn-Bonferroni tests. RESULTS All sperm parameters and weights were significantly decreased among rats receiving Busulfan. All dosages of Loboob were effective to enhance the motility of slow spermatozoa, while only in the rats given 70 and 140 mg/kg of Loboob saw improvements in progressively motile sperm percentages (0.024 and 0.01, respectively). Loboob at a dosage of 140mg/kg improved sperm viability. It did not improve normal morphology sperm or decrease immotile sperm counts. Loboob did not affect mean rat weight. CONCLUSIONS Loboob offered a dose-dependent protective effect on several sperm parameters in rats with busulfan-induced subfertility.
Collapse
Affiliation(s)
- Soghra Bahmanpour
- Anatomy Department, School of Medicine, Shiraz University of
Medical Sciences, Shiraz, Iran , Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran
| | - Mojtaba Keshavarz
- Endocrine and Metabolism Research Center, Shiraz University of
Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrine and Metabolism Research Center, Shiraz University of
Medical Sciences, Shiraz, Iran
| | - Parmis Badr
- Pharmaceutical Sciences Research Center, Shiraz University of
Medical Sciences, Shiraz, Iran , Phytopharmaceutical Technology and Traditional Medicine Incubator,
Shiraz University of Medical Sciences, Shiraz, Iran
| | - Adel Noori
- Student Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | | | - Tahereh Poordast
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | - Fateme Sadat Najib
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | - Najaf Zare
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Biostatistics, School of Medicine, Shiraz University
of Medical Sciences, Shiraz, Iran
| | - Niloofar Namazi
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | - Bahia Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran ,Corresponding author: Bahia Namavar Jahromi Department
of OB-GYN School of Medicine Shiraz University of Medical Sciences Shiraz, Iran.
E-mail:
| |
Collapse
|
6
|
Upadhyay VR, Ramesh V, Dewry RK, Kumar G, Raval K, Patoliya P. Implications of cryopreservation on structural and functional attributes of bovine spermatozoa: An overview. Andrologia 2021; 53:e14154. [PMID: 34143907 DOI: 10.1111/and.14154] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 01/31/2023] Open
Abstract
Sperm cryopreservation is an important adjunct to assisted reproduction techniques (ART) for improving the reproductive efficiency of dairy cattle and buffaloes. Improved understanding of mechanisms and challenges of bovine semen cryopreservation is vital for artificial insemination on a commercial basis. Although cryopreservation of bovine spermatozoa is widely practiced and advanced beyond that of other species, there are still major gaps in the knowledge and technology. Upon cryopreservation, disruption of spermatozoal plasma membrane configuration due to alterations in metabolic pathways, enzymes and antioxidants activity add to lower efficiency with loss of sperm longevity and fertilising ability. Therefore, the effective amalgamation of cryo-variables like ambient temperature, cooling and thawing rates, nucleation temperature, type and concentration of the cryoprotectant, seminal plasma composition, free radicals and antioxidant status are required to optimise cryopreservation. Novel strategies like supplementation of cholesterol-loaded cyclodextrins (CLC), nanovesicles, osteopontin, antioxidants, etc., in an extender and recent techniques like nano-purification and modified packaging have to be optimised to ameliorate the cryodamage. This article is intended to describe the basic facts about the sperm cryopreservation process in bovine and the associated biochemical, biophysical, ultra-structural, molecular and functional alterations.
Collapse
Affiliation(s)
| | - Vikram Ramesh
- Animal Reproduction and Gynecology, ICAR-National Research Centre on Mithun, Medziphema, India
| | - Raju Kumar Dewry
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Gaurav Kumar
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, India
| | - Kathan Raval
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Priyanka Patoliya
- Division of Livestock Production Management, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
7
|
Bertocchi M, Rigillo A, Elmi A, Ventrella D, Aniballi C, G. Scorpio D, Scozzoli M, Bettini G, Forni M, Bacci ML. Preliminary Assessment of the Mucosal Toxicity of Tea Tree ( Melaleuca alternifolia) and Rosemary ( Rosmarinus officinalis) Essential Oils on Novel Porcine Uterus Models. Int J Mol Sci 2020; 21:ijms21093350. [PMID: 32397373 PMCID: PMC7247571 DOI: 10.3390/ijms21093350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance, an ever-growing global crisis, is strongly linked to the swine production industry. In previous studies, Melaleucaalternifolia and Rosmarinusofficinalis essential oils have been evaluated for toxicity on porcine spermatozoa and for antimicrobial capabilities in artificial insemination doses, with the future perspective of their use as antibiotic alternatives. The aim of the present research was to develop and validate in vitro and ex vivo models of porcine uterine mucosa for the evaluation of mucosal toxicity of essential oils. The in vitro model assessed the toxicity of a wider range of concentrations of both essential oils (from 0.2 to 500 mg/mL) on sections of uterine tissue, while the ex vivo model was achieved by filling the uterine horns. The damage induced by the oils was assessed by Evans Blue (EB) permeability assay and histologically. The expression of ZO-1, a protein involved in the composition of tight junctions, was assessed through immunohistochemical and immunofluorescence analysis. The results showed that low concentrations (0.2–0.4 mg/mL) of both essential oils, already identified as non-spermicidal but still antimicrobial, did not alter the structure and permeability of the swine uterine mucosa. Overall, these findings strengthen the hypothesis of a safe use of essential oils in inseminating doses of boar to replace antibiotics.
Collapse
Affiliation(s)
- Martina Bertocchi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (BO), Italy; (M.B.); (A.R.); (D.V.); (C.A.); (D.G.S.); (G.B.); (M.F.); (M.L.B.)
| | - Antonella Rigillo
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (BO), Italy; (M.B.); (A.R.); (D.V.); (C.A.); (D.G.S.); (G.B.); (M.F.); (M.L.B.)
| | - Alberto Elmi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (BO), Italy; (M.B.); (A.R.); (D.V.); (C.A.); (D.G.S.); (G.B.); (M.F.); (M.L.B.)
- Correspondence: ; Tel.: +39-0512097923
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (BO), Italy; (M.B.); (A.R.); (D.V.); (C.A.); (D.G.S.); (G.B.); (M.F.); (M.L.B.)
| | - Camilla Aniballi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (BO), Italy; (M.B.); (A.R.); (D.V.); (C.A.); (D.G.S.); (G.B.); (M.F.); (M.L.B.)
| | - Diana G. Scorpio
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (BO), Italy; (M.B.); (A.R.); (D.V.); (C.A.); (D.G.S.); (G.B.); (M.F.); (M.L.B.)
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Giuliano Bettini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (BO), Italy; (M.B.); (A.R.); (D.V.); (C.A.); (D.G.S.); (G.B.); (M.F.); (M.L.B.)
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (BO), Italy; (M.B.); (A.R.); (D.V.); (C.A.); (D.G.S.); (G.B.); (M.F.); (M.L.B.)
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (BO), Italy; (M.B.); (A.R.); (D.V.); (C.A.); (D.G.S.); (G.B.); (M.F.); (M.L.B.)
| |
Collapse
|