1
|
Abu-Baih RH, Abu-Baih DH, Abdel-Hafez SMN, Fathy M. Activation of SIRT1/Nrf2/HO-1 and Beclin-1/AMPK/mTOR autophagy pathways by eprosartan ameliorates testicular dysfunction induced by testicular torsion in rats. Sci Rep 2024; 14:12566. [PMID: 38822026 PMCID: PMC11143266 DOI: 10.1038/s41598-024-62740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Testicular torsion carries the ominous prospect of inducing acute scrotal distress and the perilous consequence of testicular atrophy, necessitating immediate surgical intervention to reinstate vital testicular perfusion, notwithstanding the paradoxical detrimental impact of reperfusion. Although no drugs have secured approval for this urgent circumstance, antioxidants emerge as promising candidates. This study aspires to illustrate the influence of eprosartan, an AT1R antagonist, on testicular torsion in rats. Wistar albino rats were meticulously separated into five groups, (n = 6): sham group, eprosartan group, testicular torsion-detorsion (T/D) group, and two groups of T/D treated with two oral doses of eprosartan (30 or 60 mg/kg). Serum testosterone, sperm analysis and histopathological examination were done to evaluate spermatogenesis. Oxidative stress markers were assessed. Bax, BCL-2, SIRT1, Nrf2, HO-1 besides cleaved caspase-3 testicular contents were estimated using ELISA or qRT-PCR. As autophagy markers, SQSTM-1/p62, Beclin-1, mTOR and AMPK were investigated. Our findings highlight that eprosartan effectively improved serum testosterone levels, testicular weight, and sperm count/motility/viability, while mitigating histological irregularities and sperm abnormalities induced by T/D. This recovery in testicular function was underpinned by the activation of the cytoprotective SIRT1/Nrf2/HO-1 axis, which curtailed testicular oxidative stress, indicated by lowering the MDA content and increasing GSH content. In terms of apoptosis, eprosartan effectively countered apoptotic processes by decreasing cleaved caspase-3 content, suppressing Bax and stimulating Bcl-2 gene expression. Simultaneously, it reactivated impaired autophagy by increasing Beclin-1 expression, decreasing the expression of SQSTM-1/p62 and modulate the phosphorylation of AMPK and mTOR proteins. Eprosartan hold promise for managing testicular dysfunction arising from testicular torsion exerting antioxidant, pro-autophagic and anti-apoptotic effect via the activation of SIRT1/Nrf2/HO-1 as well as Beclin-1/AMPK/mTOR pathways.
Collapse
Affiliation(s)
- Rania H Abu-Baih
- Faculty of Pharmacy, Drug Information Center, Minia University, Minia, 61519, Egypt
| | - Dalia H Abu-Baih
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
- Deraya Center for Scientific Research, Deraya University, Minia, 61111, Egypt
| | | | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
2
|
Akhigbe R, Odetayo A, Akhigbe T, Hamed M, Ashonibare P. Pathophysiology and management of testicular ischemia/reperfusion injury: Lessons from animal models. Heliyon 2024; 10:e27760. [PMID: 38694115 PMCID: PMC11058307 DOI: 10.1016/j.heliyon.2024.e27760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024] Open
Abstract
Testicular torsion is a urological emergency that involves the twisting of the spermatic cord along its course. Compelling pieces of evidence have implicated oxidative stress-sensitive signaling in pathogenesis of testicular I/R injury. Although, surgical detorsion is the mainstay management; blockade of the pathways involved in the pathogenesis may improve the surgical outcome. Experimental studies using various testicular I/R models have been reported in a bid to explore the mechanisms associated with testicular I/R and evaluate the benefits of potential therapeutic measures; however, most are limited by their shortcomings. Thus, this review was intended to describe the details of the available testicular I/R models as well as their merits and drawbacks, the pathophysiological basis and consequences of testicular I/R, and the pharmacological agents that have being proposed to confer testicular benefits against testicular I/R. This provides an understanding of the pathophysiological events and available models used in studying testicular I/R. In addition, this research provides evidence-based molecules with therapeutic potentials as well as their mechanisms of action in testicular I/R.
Collapse
Affiliation(s)
- R.E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - A.F. Odetayo
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - T.M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osun State, Nigeria
| | - M.A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - P.J. Ashonibare
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
3
|
Ni F, Wang F, Li J, Liu Y, Sun X, Chen J, Li J, Zhang Y, Jin J, Ye X, Tu M, Chen J, Chen C, Zhang D. BNC1 deficiency induces mitochondrial dysfunction-triggered spermatogonia apoptosis through the CREB/SIRT1/FOXO3 pathway: the therapeutic potential of nicotinamide riboside and metformin†. Biol Reprod 2024; 110:615-631. [PMID: 38079523 DOI: 10.1093/biolre/ioad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/14/2023] [Accepted: 02/06/2023] [Indexed: 03/16/2024] Open
Abstract
Male infertility is a global health problem that disturbs numerous couples worldwide. Basonuclin 1 (BNC1) is a transcription factor mainly expressed in proliferative keratinocytes and germ cells. A frameshift mutation of BNC1 was identified in a large Chinese primary ovarian insufficiency pedigree. The expression of BNC1 was significantly decreased in the testis biopsies of infertile patients with nonobstructive azoospermia. Previous studies have revealed that mice with BNC1 deficiency are generally subfertile and undergo gradual spermatogenic failure. We observed that apoptosis of spermatogonia is tightly related to spermatogenic failure in mice with a Bnc1 truncation mutation. Such impairment is related to mitochondrial dysfunction causing lower mitochondrial membrane potential and higher reactive oxygen species. We showed that downregulation of CREB/SIRT1/FOXO3 signaling participates in the above impairment. Administration of nicotinamide riboside or metformin reversed mitochondrial dysfunction and inhibited apoptosis in Bnc1-knockdown spermatogonia by stimulating CREB/SIRT1/FOXO3 signaling. Dietary supplementation with nicotinamide riboside or metformin in mutated mice increased SIRT1 signaling, improved the architecture of spermatogenic tubules, inhibited apoptosis of the testis, and improved the fertility of mice with a Bnc1 truncation mutation. Our data establish that oral nicotinamide riboside or metformin can be useful for the treatment of spermatogenic failure induced by Bnc1 mutation.
Collapse
Affiliation(s)
- Feida Ni
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feixia Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingyi Li
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao Sun
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianpeng Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaqun Li
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanye Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiani Jin
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaohang Ye
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mixue Tu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhua Chen
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuan Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Kutluhan MA, Özsoy E, Şahin A, Ürkmez A, Topaktaş R, Toprak T, Gümrükçü G, Verit A. Effects of platelet-rich plasma on spermatogenesis and hormone production in an experimental testicular torsion model. Andrology 2021; 9:407-413. [PMID: 32866352 DOI: 10.1111/andr.12895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/06/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Platelet-rich plasma is a biological instrument rich in growth factors and cytokines. OBJECTIVES The aim of this study was to investigate the effect of platelet-rich plasma on spermatogenesis and hormone production in an experimental testicular torsion model. MATERIALS AND METHODS The rats were randomly divided into three groups, including six rats in each group as follows: the first group as the sham group; the second group as the ischemia/reperfusion + Saline group and the third group as the ischemia/reperfusion + platelet-rich plasma group. The left testicles of the ischemia/reperfusion + Saline and ischemia/reperfusion + platelet-rich plasma group were kept in four-hour torsion. Then, the left testicles of ischemia/reperfusion + Saline and ischemia/reperfusion + platelet-rich plasma groups were detorsioned, and intra-testicular 1 cc saline (ischemia/reperfusion + Saline) and 1 cc platelet-rich plasma (ischemia/reperfusion + platelet-rich plasma) were injected. At one month, blood samples were taken from all groups for hormonal evaluation and left orchiectomy was performed. RESULTS The mean follicle-stimulating hormone level of ischemia/reperfusion + Saline group was significantly higher than ischemia/reperfusion + platelet-rich plasma group (7.78 ± 0.23 vs 6.18 ± 0.28 nmol/l, respectively, P = .004). The mean LH level of ischemia/reperfusion + platelet-rich plasma group was significantly lower than ischemia/reperfusion + Saline group (3.63 ± 0.28 vs 5.68 ± 0.21 nmol/l, respectively, P = .004). The mean total testosterone level of ischemia/reperfusion + platelet-rich plasma group was significantly higher than ischemia/reperfusion + Saline group (8.05 ± 0.24 vs 5.78 ± 0.23 nmol/l, respectively, P = .004). The mean Johnsen scores of ischemia/reperfusion + platelet-rich plasma group were significantly higher than ischemia/reperfusion + Saline group (5.85 ± 0.58 vs 3.93 ± 0.65, respectively, P = .004). The mean Johnsen score of the sham group was significantly higher than ischemia/reperfusion + platelet-rich plasma and ischemia/reperfusion + Saline groups (P = .003 and P = .003, respectively). DISCUSSION AND CONCLUSION The platelet-rich plasma has beneficial effects on spermatogenesis and reproductive hormone production in testicular torsion. It is easily accessible and applicable. In the future, intra-testicular platelet-rich plasma injection may be used in testicular torsion after detorsion. However, further experimental and large-scale prospective clinical studies are needed to establish a definitive conclusion on this topic.
Collapse
Affiliation(s)
- Musab Ali Kutluhan
- Department of Urology, Fatih Sultan Mehmet Training and Research Hospital, Istanbul, Turkey
| | - Emrah Özsoy
- Department of Urology, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Aytaç Şahin
- Department of Urology, Fatih Sultan Mehmet Training and Research Hospital, Istanbul, Turkey
| | - Ahmet Ürkmez
- Department of Urology, Fatih Sultan Mehmet Training and Research Hospital, Istanbul, Turkey
| | - Ramazan Topaktaş
- Department of Urology, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Tuncay Toprak
- Department of Urology, Fatih Sultan Mehmet Training and Research Hospital, Istanbul, Turkey
| | - Gülistan Gümrükçü
- Department of Pathology, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Ayhan Verit
- Department of Urology, Fatih Sultan Mehmet Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
5
|
Tajabadi E, Javadi A, Azar NA, Najafi M, Shirazi A, Shabeeb D, Musa AE. Radioprotective effect of a combination of melatonin and metformin on mice spermatogenesis: A histological study. Int J Reprod Biomed 2020; 18:1073-1080. [PMID: 33426418 PMCID: PMC7778753 DOI: 10.18502/ijrm.v18i12.8029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 03/04/2020] [Accepted: 06/27/2020] [Indexed: 11/24/2022] Open
Abstract
Background The spermatogenesis system includes highly radiosensitive cells. Hence, this system is a potential target for toxic effects of ionizing radiation during radiotherapy of abdomen and pelvis cancers, as well as after accidental radiation events. Accordingly, metformin and melatonin are two important radioprotectors that have shown an ability to prevent cell death through neutralization of free radicals and stimulating DNA damage responses. Objective To evaluate the radioprotective effects of melatonin and metformin on mice spermatogenesis when administered alone or as a combination. Materials and Methods In this histological Study, 40 (6-8 wk, 30 gr) NMRI mice were divided into 8 groups (n = 5/each) as control, metformin, melatonin, melatonin + metformin, radiation, radiation + melatonin, radiation + metformin, and radiation + melatonin + metformin. 37 days after the irradiation, the testicular tissues were collected for histological evaluation. Results Single administration of melatonin could ameliorate effectively radiation toxicity in mice testis. Metformin showed radioprotective effects on some parameters such as the numbers of spermatogonia and mature sperms. Interestingly, the melatonin and metformin combination reversed the reduced number of sperms rather than single drug administration. Conclusion The combination of melatonin with metformin can protect mice spermatogenesis against ionizing radiation more effectively compared to the single forms of these drugs.
Collapse
Affiliation(s)
- Elham Tajabadi
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abdolreza Javadi
- Department of Pathology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Ahmadi Azar
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Radiation Oncology Department, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| |
Collapse
|
6
|
Jia Y, Cui R, Wang C, Feng Y, Li Z, Tong Y, Qu K, Liu C, Zhang J. Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway. Redox Biol 2020; 32:101534. [PMID: 32330868 PMCID: PMC7178548 DOI: 10.1016/j.redox.2020.101534] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 01/09/2023] Open
Abstract
Intestinal ischemia-reperfusion (I/R) injury is a life-threatening vascular emergency and has long been a disturbing problem for surgeons. Oxidative stress is considered a vital factor in I/R injury. Metformin has anti-oxidative properties and protects against I/R injury. The present study aimed to investigate whether Metformin protects against intestinal I/R injury and reveal the protective mechanism of Metformin. I/R injury was induced in mice by temporary superior mesenteric artery occlusion, and Caco-2 cells were subjected to OGD/R to establish an in vitro model. Different doses of Metformin were administered in vivo and in vitro. We found that I/R injury led to intestinal barrier disruption and cell death by examining histopathological results and the intestinal barrier index, including TER, tight junction proteins and serum biomarkers. We confirmed the existence of pyroptosis in intestinal I/R injury. Moreover, we confirmed the role of pyroptosis in intestinal I/R injury by silencing the gasdermin D (GSDMD). Then, we confirmed that Metformin treatment protected barrier function against intestinal I/R injury and reduced oxidative stress and the inflammatory response. Importantly, Metformin reduced pyroptosis-related proteins, including NLRP3, cleaved caspase-1, and the N-terminus of GSDMD. Knocking down the GSDMD could reversed the protective effects of Metformin, which showed pyroptosis was one of the major cell death pathways controlled by Metformin treatment in setting of intestinal I/R injury. We also discovered that Metformin suppressed the expression of TXNIP and the interaction between TXNIP and NLRP3. We performed siRNA knockdown and found that the protective effects were abolished, which further confirmed our findings. In conclusion, we believe that Metformin protects against intestinal I/R injury in a TXNIP-NLRP3-GSDMD-dependent manner. Pyroptosis plays an important role in intestinal I/R injury. Metformin protects against intestinal I/R injury in mice. Metformin protects Caco-2 cells subjected to OGD/R. Metformin inhibits pyroptosis, inflammation and oxidative stress during I/R injury. Metformin exerts protective effect through TXNIP-NLRP3-GSDMD pathway.
Collapse
Affiliation(s)
- Yifan Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Ruixia Cui
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Cong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yang Feng
- Department of Rehabilitation Medicine, The Affiliated Hospital of Northwest University, Xi'an NO.3 Hospital, Xi'an, Shaanxi, 710021, China
| | - Zeyu Li
- Department of General Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, 710068, China
| | - Yingmu Tong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|