1
|
Crafa A, Cannarella R, Calogero AE, Gunes S, Agarwal A. Behind the Genetics: The Role of Epigenetics in Infertility-Related Testicular Dysfunction. Life (Basel) 2024; 14:803. [PMID: 39063558 PMCID: PMC11277947 DOI: 10.3390/life14070803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, we have witnessed a progressive decline in male fertility. This is partly related to the increased prevalence of chronic diseases (e.g., obesity and diabetes mellitus) and risky lifestyle behaviors. These conditions alter male fertility through various non-genetic mechanisms. However, there is increasing evidence that they are also capable of causing sperm epigenetic alterations, which, in turn, can cause infertility. Furthermore, these modifications could be transmitted to offspring, altering their general and reproductive health. Therefore, these epigenetic modifications could represent one of the causes of the progressive decline in sperm count recorded in recent decades. This review focuses on highlighting epigenetic modifications at the sperm level induced by non-genetic causes of infertility. In detail, the effects on DNA methylation, histone modifications, and the expression profiles of non-coding RNAs are evaluated. Finally, a focus on the risk of transgenerational inheritance is presented. Our narrative review aims to demonstrate how certain conditions can alter gene expression, potentially leading to the transmission of anomalies to future generations. It emphasizes the importance of the early detection and treatment of reversible conditions (such as obesity and varicocele) and the modification of risky lifestyle behaviors. Addressing these issues is crucial for individual health, in preserving fertility, and in ensuring the well-being of future generations.
Collapse
Affiliation(s)
- Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (R.C.); (A.E.C.)
- Global Andrology Forum, Moreland Hills, OH 44022, USA
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (R.C.); (A.E.C.)
- Global Andrology Forum, Moreland Hills, OH 44022, USA
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (R.C.); (A.E.C.)
- Global Andrology Forum, Moreland Hills, OH 44022, USA
| | - Sezgin Gunes
- Global Andrology Forum, Moreland Hills, OH 44022, USA
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, 55280 Samsun, Türkiye
| | - Ashok Agarwal
- Global Andrology Forum, Moreland Hills, OH 44022, USA
- Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Hosseini M, Khalafiyan A, Zare M, Karimzadeh H, Bahrami B, Hammami B, Kazemi M. Sperm epigenetics and male infertility: unraveling the molecular puzzle. Hum Genomics 2024; 18:57. [PMID: 38835100 PMCID: PMC11149391 DOI: 10.1186/s40246-024-00626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The prevalence of infertility among couples is estimated to range from 8 to 12%. A paradigm shift has occurred in understanding of infertility, challenging the notion that it predominantly affects women. It is now acknowledged that a significant proportion, if not the majority, of infertility cases can be attributed to male-related factors. Various elements contribute to male reproductive impairments, including aberrant sperm production caused by pituitary malfunction, testicular malignancies, aplastic germ cells, varicocele, and environmental factors. MAIN BODY The epigenetic profile of mammalian sperm is distinctive and specialized. Various epigenetic factors regulate genes across different levels in sperm, thereby affecting its function. Changes in sperm epigenetics, potentially influenced by factors such as environmental exposures, could contribute to the development of male infertility. CONCLUSION In conclusion, this review investigates the latest studies pertaining to the mechanisms of epigenetic changes that occur in sperm cells and their association with male reproductive issues.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anis Khalafiyan
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Zare
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniye Karimzadeh
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Basireh Bahrami
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnaz Hammami
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Reproductive Sciences and Sexual Health Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Muñoz E, Fuentes F, Felmer R, Arias ME, Yeste M. Effects of Reactive Oxygen and Nitrogen Species on Male Fertility. Antioxid Redox Signal 2024; 40:802-836. [PMID: 38019089 DOI: 10.1089/ars.2022.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Significance: In recent decades, male fertility has been severely reduced worldwide. The causes underlying this decline are multifactorial, and include, among others, genetic alterations, changes in the microbiome, and the impact of environmental pollutants. Such factors can dysregulate the physiological levels of reactive species of oxygen (ROS) and nitrogen (RNS) in the patient, generating oxidative and nitrosative stress that impairs fertility. Recent Advances: Recent studies have delved into other factors involved in the dysregulation of ROS and RNS levels, such as diet, obesity, persistent infections, environmental pollutants, and gut microbiota, thus leading to new strategies to solve male fertility problems, such as consuming prebiotics to regulate gut flora or treating psychological conditions. Critical Issues: The pathways where ROS or RNS may be involved as modulators are still under investigation. Moreover, the extent to which treatments can rescue male infertility as well as whether they may have side effects remains, in most cases, to be elucidated. For example, it is known that prescription of antioxidants to treat nitrosative stress can alter sperm chromatin condensation, which makes DNA more exposed to ROS and RNS, and may thus affect fertilization and early embryo development. Future Directions: The involvement of extracellular vesicles, which might play a crucial role in cell communication during spermatogenesis and epididymal maturation, and the relevance of other factors such as sperm epigenetic signatures should be envisaged in the future.
Collapse
Affiliation(s)
- Erwin Muñoz
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Fernanda Fuentes
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
4
|
Hekim N, Gunes S, Ergun S, Barhan EN, Asci R. Investigation of sperm hsa-mir-145-5p and MLH1 expressions, seminal oxidative stress and sperm DNA fragmentation in varicocele. Mol Biol Rep 2024; 51:588. [PMID: 38683237 DOI: 10.1007/s11033-024-09534-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Mechanisms by which varicocele causes infertility are not clear and few studies have reported that some miRNAs show expression alterations in men with varicocele. Recently, sperm promoter methylation of MLH1 has been shown to be higher in men diagnosed with varicocele. This study aimed to assess the potential effects of miR-145, which was determined to target MLH1 mRNA in silico on sperm quality and function in varicocele. METHODS Sperm miR-145 and MLH1 expressions of six infertile men with varicocele (Group 1), nine idiopathic infertile men (Group 2), and nine fertile men (control group) were analyzed by quantitative PCR. Sperm DNA fragmentation was evaluated by TUNEL and the levels of seminal oxidative damage and total antioxidant capacity were analyzed by ELISA. RESULTS Our results have shown that sperm expression of miR-145 was decreased in Group 1 compared to Group 2 (P = 0.029). MLH1 expression was significantly higher in Group 2 than the controls (P = 0.048). Total antioxidant level and sperm DNA fragmentations of Group 1 and Group 2 were decreased (P = 0.001 and P = 0.011, respectively). Total antioxidant capacity was positively correlated with sperm concentration (ρ = 0.475, P = 0.019), total sperm count (ρ = 0.427, P = 0.037), motility (ρ = 0.716, P < 0.0001) and normal morphological forms (ρ = 0.613, P = 0.001) and negatively correlated with the seminal oxidative damage (ρ=-0.829, P = 0.042) in varicocele patients. CONCLUSION This is the first study investigating the expressions of sperm miR-145 and MLH1 in varicocele patients. Further studies are needed to clarify the potential effect of miR-145 on male fertility.
Collapse
Affiliation(s)
- Neslihan Hekim
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, 55139, Turkey.
- Graduate Institute, Department of Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey.
| | - Sezgin Gunes
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, 55139, Turkey
- Graduate Institute, Department of Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sercan Ergun
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, 55139, Turkey
- Graduate Institute, Department of Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Elzem Nisa Barhan
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, 55139, Turkey
| | - Ramazan Asci
- Graduate Institute, Department of Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey
- Faculty of Medicine, Department of Urology, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
5
|
Fathi M, Ghafouri-Fard S. Impacts of non-coding RNAs in the pathogenesis of varicocele. Mol Biol Rep 2024; 51:322. [PMID: 38393415 DOI: 10.1007/s11033-024-09280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Two classes of non-coding RNAs, namely lncRNAs and miRNAs have been reported to be involved in the pathogenesis of varicocele. MIR210HG, MLLT4-AS1, gadd7, and SLC7A11-AS1 are among lncRNAs whose expression has been changed in patients with varicocele in association with the sperm quality. Animal studies have also suggested contribution of NONRATG001060, NONRATG002949, NONRATG013271, NONRATG027523 and NONRATG023747 lncRNAs in this pathology. Meanwhile, expression of some miRNAs, such as miR-210-3p, miR-21, miR-34a, miR-122a, miR-181a, miR-34c and miR-192a has been altered in this condition. Some of these transcripts have the potential to predict the sperm quality. We summarize the impacts of lncRNAs and miRNAs in the pathogenesis of varicocele.
Collapse
Affiliation(s)
- Mohadeseh Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Shi Z, Yu M, Guo T, Sui Y, Tian Z, Ni X, Chen X, Jiang M, Jiang J, Lu Y, Lin M. MicroRNAs in spermatogenesis dysfunction and male infertility: clinical phenotypes, mechanisms and potential diagnostic biomarkers. Front Endocrinol (Lausanne) 2024; 15:1293368. [PMID: 38449855 PMCID: PMC10916303 DOI: 10.3389/fendo.2024.1293368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
Infertility affects approximately 10-15% of couples worldwide who are attempting to conceive, with male infertility accounting for 50% of infertility cases. Male infertility is related to various factors such as hormone imbalance, urogenital diseases, environmental factors, and genetic factors. Owing to its relationship with genetic factors, male infertility cannot be diagnosed through routine examination in most cases, and is clinically called 'idiopathic male infertility.' Recent studies have provided evidence that microRNAs (miRNAs) are expressed in a cell-or stage-specific manner during spermatogenesis. This review focuses on the role of miRNAs in male infertility and spermatogenesis. Data were collected from published studies that investigated the effects of miRNAs on spermatogenesis, sperm quality and quantity, fertilization, embryo development, and assisted reproductive technology (ART) outcomes. Based on the findings of these studies, we summarize the targets of miRNAs and the resulting functional effects that occur due to changes in miRNA expression at various stages of spermatogenesis, including undifferentiated and differentiating spermatogonia, spermatocytes, spermatids, and Sertoli cells (SCs). In addition, we discuss potential markers for diagnosing male infertility and predicting the varicocele grade, surgical outcomes, ART outcomes, and sperm retrieval rates in patients with non-obstructive azoospermia (NOA).
Collapse
Affiliation(s)
- Ziyan Shi
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Miao Yu
- Science Experiment Center, China Medical University, Shenyang, China
| | - Tingchao Guo
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Yu Sui
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Zhiying Tian
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Xiang Ni
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Xinren Chen
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Miao Jiang
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Jingyi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Yongping Lu
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Meina Lin
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Esteves SC, Coimbra I, Hallak J. Surgically retrieved spermatozoa for ICSI cycles in non-azoospermic males with high sperm DNA fragmentation in semen. Andrology 2023; 11:1613-1634. [PMID: 36734283 DOI: 10.1111/andr.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Intracytoplasmic sperm injection (ICSI) using surgically retrieved spermatozoa outside the classic context of azoospermia has been increasingly used to overcome infertility. The primary indications include high levels of sperm DNA damage in ejaculated spermatozoa and severe oligozoospermia or cryptozoospermia, particularly in couples with ICSI failure for no apparent reason. Current evidence suggests that surgically retrieved spermatozoa for ICSI in the above context improves outcomes, mainly concerning pregnancy and miscarriage rates. The reasons are not fully understood but may be related to the lower levels of DNA damage in spermatozoa retrieved from the testis compared with ejaculated counterparts. These findings are consistent with the notion that excessive sperm DNA damage can be a limiting factor responsible for the failure to conceive. Using testicular in preference of low-quality ejaculated spermatozoa bypasses post-testicular sperm DNA damage caused primarily by oxidative stress, thus increasing the likelihood of oocyte fertilization by genomically intact spermatozoa. Despite the overall favorable results, data remain limited, and mainly concern males with confirmed sperm DNA damage in the ejaculate. Additionally, information regarding the health of ICSI offspring resulting from the use of surgically retrieved spermatoa of non-azoospermic males is still lacking. Efforts should be made to improve the male partner's reproductive health for safer ICSI utilization. A comprehensive andrological evaluation aiming to identify and treat the underlying male infertility factor contributing to sperm DNA damage is essential for achieving this goal.
Collapse
Affiliation(s)
- Sandro C Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Av. Dr. Heitor Penteado, Campinas, SP, Brazil
- Department of Surgery (Division of Urology), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Igor Coimbra
- Department of Surgery, Division of Urology, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Jorge Hallak
- Department of Surgery, Division of Urology, University of São Paulo Medical School, São Paulo, SP, Brazil
- Department of Pathology, Reproductive Toxicology Unit, University of São Paulo Medical School, São Paulo, SP, Brazil
- Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo, SP, Brazil
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Andrology Research Laboratory, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Arya D, Balasinor N, Singh D. Varicocele associated male infertility: cellular and molecular perspectives of pathophysiology. Andrology 2022; 10:1463-1483. [PMID: 36040837 DOI: 10.1111/andr.13278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Varicocele is a common risk factor associated with reduced male fertility potential. The current understanding of varicocele pathophysiology does not completely explain the clinical manifestation of infertility. The present treatment options such as antioxidant supplementation and varicocelectomy only helps ∼35% of men to achieve spontaneous pregnancy. OBJECTIVE This review aims to summarize the available knowledge on cellular and molecular alterations implicated to varicocele associated male infertility and also highlights the new knowledge generated by 'Omics' technologies. MATERIALS AND METHODS PubMed, MEDLINE, Cochrane and Google Scholar databases are searched using different combinations of keywords (varicocele, infertile/fertile men with varicocele, cellular changes, molecular mechanisms, proteome, epigenome, transcriptome and metabolome). A total of 229 relevant human and animal studies published till 2021 were included in this review. RESULTS Current understanding advocates oxidative stress (OS) as a major contributory factor to the varicocele associated male infertility. Excessive OS causes alteration in testicular microenvironment and sperm DNA fragmentation which further contributes to infertility. Molecular and omics studies have identified several promising biomarkers such as AAMP, SPINT1, MKI67 (genetic markers), sperm quality and function related protein markers, global sperm DNA methylation level (epigenetic marker), Hspa2, Protamine, Gadd7, Dynlt1 and Beclin1 (mRNA markers), PRDX2, HSPA, APOA2, YKL40 (seminal protein markers), total choline and PHGDH (metabolic markers). DISCUSSION Mature spermatozoa harbours a plethora of molecular information in form of proteome, epigenome and transcriptome; which could provide very important clues regarding pathophysiology of varicocele associated infertility. Recent molecular and omics studies in infertile men with varicocele have identified several promising biomarkers. Upon further validation with larger and well-defined studies, some of these biomarkers could aid in varicocele management. CONCLUSION The present evidences suggest inclusion of OS and sperm DNA fragmentation tests could be useful to the diagnostic workup for men with varicocele. Furthermore, including precise molecular markers may assist in diagnostics and prognostics of varicocele associated male infertility. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Deepshikha Arya
- Department of Neuroendocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Nafisa Balasinor
- Department of Neuroendocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Dipty Singh
- Department of Neuroendocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| |
Collapse
|
9
|
Wang S, Kang J, Song Y, Zhang A, Pan Y, Zhang Z, Li Y, Niu S, Liu L, Liu X. Long noncoding RNAs regulated spermatogenesis in varicocele-induced spermatogenic dysfunction. Cell Prolif 2022; 55:e13220. [PMID: 35297519 PMCID: PMC9136499 DOI: 10.1111/cpr.13220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Objectives To evaluate the expression, potential functions and mechanisms of long noncoding RNAs (lncRNAs) in the pathogenesis of varicocele (VC)‐induced spermatogenic dysfunction. Materials and Methods We established a rat model with left experimental VC and divided rats into the sham group, the VC group, and the surgical treatment group (each group, n = 10). Haematoxylin and eosin (HE) staining and sperm quality were analysed to evaluate spermatogenesis function. LncRNA expression profiles were analysed using lncRNA‐Seq (each group n = 3) and validated using quantitative real‐time polymerase chain reaction (each group n = 10). Correlation analysis and gene target miRNA prediction were used to construct competing endogenous RNA network. The regulated signalling pathway and spermatogenic dysfunction of differentially expressed lncRNAs (DE lncRNAs) were validated by Western blot. Results HE detection and sperm quality analysis showed that VC could induce spermatogenic dysfunction. Eight lncRNAs were upregulated and three lncRNAs were downregulated in the VC group compared with the sham group and surgical treatment group. The lncRNA of NONRATG002949.2, NONRATG001060.2, NONRATG013271.2, NONRATG022879.2, NONRATG023424.2, NONRATG005667.2 and NONRATG010686.2 were significantly negatively related to sperm quality, while NONRATG027523.1, NONRATG017183.2 and NONRATG023747.2 were positively related to sperm quality. The lncRNAs promote spermatogenic cell apoptosis and inhibit spermatogonia and spermatocyte proliferation and meiotic spermatocytes by regulating the PI3K–Akt signalling pathway. Conclusion DE lncRNAs may be potential biomarkers for predicting the risk of spermatogenic dysfunction in VC and the effect of surgical repair. These DE lncRNAs promote spermatogenic dysfunction by regulating the PI3K–Akt signalling pathway.
Collapse
Affiliation(s)
- Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaqi Kang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuxuan Song
- Department of Urology, Peking University People's Hospital, Beijing, China.,Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Aiqiao Zhang
- Department of Neonatology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Neonatology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Pan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhexin Zhang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuezheng Li
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuai Niu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Cui FP, Liu C, Deng YL, Chen PP, Miao Y, Luo Q, Zhang M, Yang P, Wang YX, Lu WQ, Zeng Q. Urinary and seminal plasma concentrations of phthalate metabolites in relation to spermatogenesis-related miRNA106a among men from an infertility clinic. CHEMOSPHERE 2022; 288:132464. [PMID: 34619260 DOI: 10.1016/j.chemosphere.2021.132464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Studies indicate that phthalates can disrupt spermatogenesis and lead to the reduction of semen quality. However, the underlying mechanisms remain unclear. This study aimed to examine the associations of phthalate exposures as individual chemicals and mixtures with spermatogenesis-related miRNA106a. We detected eight phthalate metabolites in repeated urine samples and a single seminal plasma specimen among 111 men from an infertility clinic in Wuhan, China. Spermatogenesis-related miRNA106a was measured in seminal plasma. We used multivariable linear regression and Bayesian kernel machine regression (BKMR) models to separately evaluate the associations of phthalate metabolites as individual chemicals and mixtures with spermatogenesis-related miRNA106a. Elevated tertiles of urinary mono (2-ethylhexyl) phthalate (MEHP) was associated with decreased miRNA106a (-61.71%; 95%CI: 81.92, -18.93% for the highest vs. lowest tertile; P for trend = 0.01). Similarly, an inverse exposure-response relationship between seminal plasma MEHP concentrations and miRNA106a was also observed (-59.44%; 95%CI: 79.19, -20.95% for the highest vs. lowest tertile; P for trend = 0.01). The BKMR models showed that the mixtures of seminal plasma phthalate metabolites were associated with decreased miRNA106a when the chemical mixtures were ≥35th percentile compared to their medians. Nonlinear associations with miRNA106a were estimated for urinary and seminal plasma MEHP while fixing other phthalate metabolites at their medians. Our findings suggest that mixtures of phthalate metabolites in seminal plasma were negatively associated with spermatogenesis-related miRNA106a, and individual MEHP was the major contributor to the adverse effects.
Collapse
Affiliation(s)
- Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Basic Medicine and Public Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
11
|
Mostafa T, El-Taweel AEAI, Rashed LA, Mohammed NAM, Akl EM. Assessment of seminal cystatin C levels in infertile men with varicocele: A preliminary study. Andrologia 2021; 54:e14278. [PMID: 34676572 DOI: 10.1111/and.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
Varicocele has been raised as a contributor to male infertility supported by the improvement of sperm parameters after varicocelectomy. Cystatin C (Cys C) has been linked to several cellular changes that are common in male infertility cases associated with varicocele such as apoptosis and autophagy. This preliminary study aimed to assess the seminal levels of Cys C in infertile oligoasthenoteratozoospermic (OAT) men associated with varicocele that have been shown to have spermatic vein vasodilation and active death pathway. Overall, 60 men were investigated being divided into two equivalent groups-infertile OAT men with varicocele who underwent varicocelectomy and healthy fertile men as a control group. These men were subjected to history taking, clinical examination, semen analysis and assessment of seminal Cys C pre and 6 months post-varicocelectomy. The results showed a significant increase of seminal Cys C in infertile OAT men with varicocele than the fertile control (55.57 ± 25.6 ng/ml versus 10.78 ± 1.88 ng/ml, p = .001). Seminal Cys C was a significantly decreased post-operative than its pre-operative level (34.69 ± 14.02 versus 55.57 ± 25.6 ng/ml, p = .01). These results show a potential role of Cys C in varicocele-induced infertility.
Collapse
Affiliation(s)
- Taymour Mostafa
- Department of Andrology & Sexology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Abd El-Aziz I El-Taweel
- Department of Dermatology & Andrology, Faculty of Medicine, Benha University, October 6 University, Benha, Egypt
| | - Laila Ahmed Rashed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nayera A M Mohammed
- Dermatology & Andrology specialist, Ministry of Health and Population, Cairo, Egypt
| | - Essam Mohamed Akl
- Department of Dermatology& Andrology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
12
|
Lira Neto FT, Roque M, Esteves SC. Effect of varicocelectomy on sperm deoxyribonucleic acid fragmentation rates in infertile men with clinical varicocele: a systematic review and meta-analysis. Fertil Steril 2021; 116:696-712. [PMID: 33985792 DOI: 10.1016/j.fertnstert.2021.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate the effect of varicocelectomy on sperm deoxyribonucleic acid fragmentation (SDF) rates in infertile men with clinical varicocele. DESIGN Systematic review and meta-analysis. SETTING Not applicable. PATIENT(S) Infertile men with clinical varicocele subjected to varicocelectomy. INTERVENTION(S) Systematic search using PubMed/Medline, EMBASE, Cochrane's central database, Scielo, and Google Scholar to identify relevant studies published from inception until January 2021. We included studies comparing SDF rates before and after varicocelectomy in infertile men with clinical varicocele. MAIN OUTCOME MEASURE(S) The primary outcome was the difference between the SDF rates before and after varicocelectomy. A meta-analysis of weighted data using random-effects models was performed. Results were reported as weighted mean differences (WMD) with 95% confidence intervals (CIs). Subgroup analyses were performed on the basis of the SDF assay, varicocelectomy technique, preoperative SDF levels, varicocele grade, follow-up time, and study design. RESULT(S) Nineteen studies involving 1,070 patients provided SDF data. Varicocelectomy was associated with reduced postoperative SDF rates (WMD -7.23%; 95% CI: -8.86 to -5.59; I2 = 91%). The treatment effect size was moderate (Cohen's d = 0.68; 95% CI: 0.77 to 0.60). The pooled results were consistent for studies using sperm chromatin structure assay, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling, sperm chromatin dispersion test, and microsurgical varicocele repair. Subgroup analyses showed that the treatment effect was more pronounced in men with elevated vs. normal preoperative SDF levels, but the impact of varicocele grade remained equivocal. Meta-regression analysis demonstrated that SDF decreased after varicocelectomy as a function of preoperative SDF levels (coefficient: 0.23; 95% CI: 0.07 to 0.39). CONCLUSION(S) We concluded that pooled results from studies including infertile men with clinical varicocele indicated that varicocelectomy reduced the SDF rates. The treatment effect was greater in men with elevated (vs. normal) preoperative SDF levels. Further research is required to determine the full clinical implications of SDF reduction for these men.
Collapse
Affiliation(s)
- Filipe Tenório Lira Neto
- Andros Recife, Andrology Clinic, Recife, Brazil; Department of Urology, Instituto de Medicina Integral Professor Fernando Figueira, Recife, Brazil
| | - Matheus Roque
- Department of Reproductive Medicine, Mater Prime, 04029-200 São Paulo, Brazil
| | - Sandro C Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Referral Center for Male Reproduction, 13075-460 Campinas, Brazil; Division of Urology, Department of Surgery, University of Campinas (UNICAMP), Campinas, Brazil; Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
13
|
Pantos K, Grigoriadis S, Tomara P, Louka I, Maziotis E, Pantou A, Nitsos N, Vaxevanoglou T, Kokkali G, Agarwal A, Sfakianoudis K, Simopoulou M. Investigating the Role of the microRNA-34/449 Family in Male Infertility: A Critical Analysis and Review of the Literature. Front Endocrinol (Lausanne) 2021; 12:709943. [PMID: 34276570 PMCID: PMC8281345 DOI: 10.3389/fendo.2021.709943] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
There is a great body of evidence suggesting that in both humans and animal models the microRNA-34/449 (miR-34/449) family plays a crucial role for normal testicular functionality as well as for successful spermatogenesis, regulating spermatozoa maturation and functionality. This review and critical analysis aims to summarize the potential mechanisms via which miR-34/449 dysregulation could lead to male infertility. Existing data indicate that miR-34/449 family members regulate ciliogenesis in the efferent ductules epithelium. Upon miR-34/449 dysregulation, ciliogenesis in the efferent ductules is significantly impaired, leading to sperm aggregation and agglutination as well as to defective reabsorption of the seminiferous tubular fluids. These events in turn cause obstruction of the efferent ductules and thus accumulation of the tubular fluids resulting to high hydrostatic pressure into the testis. High hydrostatic pressure progressively leads to testicular dysfunction as well as to spermatogenic failure and finally to male infertility, which could range from severe oligoasthenozoospermia to azoospermia. In addition, miR-34/449 family members act as significant regulators of spermatogenesis with an essential role in controlling expression patterns of several spermatogenesis-related proteins. It is demonstrated that these microRNAs are meiotic specific microRNAs as their expression is relatively higher at the initiation of meiotic divisions during spermatogenesis. Moreover, data indicate that these molecules are essential for proper formation as well as for proper function of spermatozoa per se. MicroRNA-34/449 family seems to exert significant anti-oxidant and anti-apoptotic properties and thus contribute to testicular homeostatic regulation. Considering the clinical significance of these microRNAs, data indicate that the altered expression of the miR-34/449 family members is strongly associated with several aspects of male infertility. Most importantly, miR-34/449 levels in spermatozoa, in testicular tissues as well as in seminal plasma seem to be directly associated with severity of male infertility, indicating that these microRNAs could serve as potential sensitive biomarkers for an accurate individualized differential diagnosis, as well as for the assessment of the severity of male factor infertility. In conclusion, dysregulation of miR-34/449 family detrimentally affects male reproductive potential, impairing both testicular functionality as well as spermatogenesis. Future studies are needed to verify these conclusions.
Collapse
Affiliation(s)
| | - Sokratis Grigoriadis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Penelope Tomara
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Louka
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Maziotis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Agni Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Nitsos
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | | | - Georgia Kokkali
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, United States
| | | | - Mara Simopoulou
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Mara Simopoulou,
| |
Collapse
|