1
|
Zhao J, Tang K, Jiang G, Yang X, Cui M, Wan C, Ouyang Z, Zheng Y, Liu Z, Wang M, Zhao XY, Chang G. Dynamic transcriptomic and regulatory networks underpinning the transition from fetal primordial germ cells to spermatogonia in mice. Cell Prolif 2024:e13755. [PMID: 39329203 DOI: 10.1111/cpr.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/24/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
The transition from fetal primordial germ cells (PGCs) to spermatogonia (SPG) is critical for male germ cell development; however, the detailed transcriptomic dynamics and regulation underlying this transition remain poorly understood. Here by interrogating the comprehensive transcriptome atlas dataset of mouse male germ cells and gonadal cells development, we elucidated the regulatory networks underlying this transition. Our single-cell transcriptome analysis revealed that the transition from PGCs to SPG was characterized by global hypertranscription. A total of 315 highly active regulators were identified to be potentially involved in this transition, among which a non-transcription factor (TF) regulator TAGLN2 was validated to be essential for spermatogonial stem cells (SSCs) maintenance and differentiation. Metabolism profiling analysis also revealed dynamic changes in metabolism-related gene expression during PGC to SPG transition. Furthermore, we uncovered that intricate cell-cell communication exerted potential functions in the regulation of hypertranscription in germ cells by collaborating with stage-specific active regulators. Collectively, our work extends the understanding of molecular mechanisms underlying male germ cell development, offering insights into the recapitulation of germ cell generation in vitro.
Collapse
Affiliation(s)
- Jiexiang Zhao
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, PR China
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Kang Tang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Gurong Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xinyan Yang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Manman Cui
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Cong Wan
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
- Maoming People's Hospital, Maoming, Guangdong, PR China
| | - Zhaoxiang Ouyang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yi Zheng
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhaoting Liu
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Mei Wang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, PR China
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xiao-Yang Zhao
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, PR China
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, PR China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Gang Chang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, Guangdong, PR China
| |
Collapse
|
2
|
Cannarella R, Curto R, Condorelli RA, Lundy SD, La Vignera S, Calogero AE. Molecular insights into Sertoli cell function: how do metabolic disorders in childhood and adolescence affect spermatogonial fate? Nat Commun 2024; 15:5582. [PMID: 38961093 PMCID: PMC11222552 DOI: 10.1038/s41467-024-49765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
Male infertility is a major public health concern globally with unknown etiology in approximately half of cases. The decline in total sperm count over the past four decades and the parallel increase in childhood obesity may suggest an association between these two conditions. Here, we review the molecular mechanisms through which obesity during childhood and adolescence may impair future testicular function. Several mechanisms occurring in obesity can interfere with the delicate metabolic processes taking place at the testicular level during childhood and adolescence, providing the molecular substrate to hypothesize a causal relationship between childhood obesity and the risk of low sperm counts in adulthood.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Scott D Lundy
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Naeemi S, Sabetkish S, Kiani MJ, Dehghan A, Kajbafzadeh AM. Ex-Vivo and In-Vivo Expansion of Spermatogonial Stem Cells Using Cell-Seeded Microfluidic Testis Scaffolds and Animal Model. Cell Tissue Bank 2023; 24:153-166. [PMID: 35792989 DOI: 10.1007/s10561-022-10024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/23/2022] [Indexed: 11/24/2022]
Abstract
AIMS This study was designed to provide both ex-vivo and in-vivo methods for the extraction and expansion of spermatogonial stem cells (SSCs). METHODS For in-vivo experiments, azoospermic mouse model was performed with Busulfan. Isolation, culture, and characterization of neonate mouse SSC were also achieved. We performed an in-vivo injection of labeled SSCs to the testes with azoospermia. In ex-vivo experiments, extracted SSCs were seeded on the fabricated scaffold consisting of hyaluronic acid (HA) and decellularized testis tissues (DTT). Immunofluorescence staining with PLZF, TP1, and Tekt 1 was performed for SSCs differentiation and proliferation. RESULTS Several studies demonstrated efficient spermatogenic arrest in seminiferous tubules and proved the absence of spermatogenesis. Transplanted SSCs moved and settled in the basement covering the seminiferous tubules. Most of the cells were positive for Dil, after 4 weeks. An epithelium containing spermatogonia-like cells with Sertoli-like, and Leydig cells were evident in the seminiferous tubules of biopsies, and the IHC staining was significantly positive, 4 weeks after injection of SSCs. The results of the ex-vivo experiments showed positive staining for all markers, which was significantly enhanced in scaffolds of ex-vivo experiments compared with in-vitro seeded scaffolds. CONCLUSION Ex-vivo SSC differentiation and proliferation using cell-seeded microfluidic testis scaffolds maybe effective for treatment of the azoospermia.
Collapse
Affiliation(s)
- Sahar Naeemi
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shabnam Sabetkish
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Kiani
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Amin Dehghan
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|