1
|
Falvo S, Santillo A, Di Fiore MM, Venditti M, Grillo G, Latino D, Baccari I, Petito G, Chieffi Baccari G. New Insights into D-Aspartate Signaling in Testicular Activity. Cells 2024; 13:1400. [PMID: 39195288 DOI: 10.3390/cells13161400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
D-aspartate (D-Asp) is an amino acid found in high concentrations in the testis and pituitary gland. Increasing evidence suggests that D-Asp promotes spermatogenesis by activating testosterone production in the Leydig cells via LH release from the pituitary gland. In vitro studies indicate that D-Asp may also influence steroidogenesis and spermatogenesis through autocrine and paracrine signals. D-Asp enhances StAR and steroidogenic enzyme expressions, facilitating testicular cell proliferation via the GluR/ERK1/2 pathway. Moreover, it supports spermatogenesis by enhancing the mitochondrial function in spermatocytes, aiding in the metabolic shift during meiosis. Enhanced mitochondrial function, along with improved MAM stability and reduced ER stress, has been observed in Leydig and Sertoli cells treated with D-Asp, indicating potential benefits in steroidogenesis and spermatogenesis efficiency. Conversely, D-Asp exerts a notable anti-apoptotic effect in the testis via the AMPAR/AKT pathway, potentially mediated by antioxidant enzyme modulation to mitigate testicular oxidative stress. This review lays the groundwork for future investigations into the molecules promoting spermatogenesis by stimulating endogenous testosterone biosynthesis, with D-amino acids emerging as promising candidates.
Collapse
Affiliation(s)
- Sara Falvo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - Alessandra Santillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - Maria Maddalena Di Fiore
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - Massimo Venditti
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', 80138 Napoli, Italy
| | - Giulia Grillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - Debora Latino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - Isabella Baccari
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', 80138 Napoli, Italy
| | - Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - Gabriella Chieffi Baccari
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| |
Collapse
|
2
|
Wu J, Kang K, Liu S, Ma Y, Yu M, Zhao X. Recent Progress of In Vitro 3D Culture of Male Germ Stem Cells. J Funct Biomater 2023; 14:543. [PMID: 37998112 PMCID: PMC10672244 DOI: 10.3390/jfb14110543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Male germline stem cells (mGSCs), also known as spermatogonial stem cells (SSCs), are the fundamental seed cells of male animal reproductive physiology. However, environmental influences, drugs, and harmful substances often pose challenges to SSCs, such as population reduction and quality decline. With advancements in bioengineering technology and biomaterial technology, an increasing number of novel cell culture methods and techniques have been employed for studying the proliferation and differentiation of SSCs in vitro. This paper provides a review on recent progress in 3D culture techniques for SSCs in vitro; we summarize the microenvironment of SSCs and spermatocyte development, with a focus on scaffold-based culture methods and 3D printing cell culture techniques for SSCs. Additionally, decellularized testicular matrix (DTM) and other biological substrates are utilized through various combinations and approaches to construct an in vitro culture microenvironment suitable for SSC growth. Finally, we present some perspectives on current research trends and potential opportunities within three areas: the 3D printing niche environment, alternative options to DTM utilization, and advancement of the in vitro SSC culture technology system.
Collapse
Affiliation(s)
- Jiang Wu
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Kai Kang
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Siqi Liu
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Yaodan Ma
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
3
|
Noghani AE, Asadpour R, Saberivand A, Mazaheri Z, Rodriguez-Wallberg KA, Hamidian G. Differentiation of neonate mouse spermatogonia on two-dimensional and three-dimensional culture systems supplemented with d-Serine and Dizocilpine (MK-801). Theriogenology 2022; 191:168-178. [PMID: 35998400 DOI: 10.1016/j.theriogenology.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
N-methyl-d-aspartate (NMDA) modulates the spermatogenesis process through stimulating the steroid hormone biosynthesis. The aim of this study was to evaluate the effects of NMDA receptors agonists (d-Serine) and antagonists (MK801) on spermatogonia differentiation on decellularization testicular matrix (DTM) hydrogel scaffold. Four treatment groups were planned: 2D + D-Serine, 3D + D-Serine, 2D + MK801, and 3D + MK801. Results showed that cell viability was significantly decreased after 48 h in the 3D + D-Serine group and after 24 and 48 h in the 3D + MK801 group compared to the controls. The spermatogonia proliferation after two, four, and eight weeks was significantly increased in the 3D + D-Serine culture, while it was significantly reduced in the 2D + MK801 and 3D + MK801 groups after four and eight weeks. Real-time PCR results demonstrated that pre-meiotic gene (Plzf) expression was significantly increased only in the 3D + D-Serine culture compared to the control groups after four weeks of culture. The meiotic gene (Sycp3) expression was significantly increased in the 2D + D-Serine and 3D + D-Serine compared to the 2D controls after four and eight weeks. The post-meiotic gene (Tnp1) level in the 3D + D-Serine was significantly higher than the other groups. Flow-cytometry results indicated that the protein expression of Plzf (after four and eight weeks), Sycp3 (after eight weeks), and Tnp1 (after eight weeks) in the d-Serine-treated groups was significantly increased compared with the 2D control groups. There were not any significant changes in the gene expression of spermatogenic-related markers in MK801 culture media. However, a significant decrease in the protein levels of Plzf after eight weeks and Sycp3 after four and eight weeks was observed. In conclusion, the addition of NMDARs agonists (d-Serine) could be used to regulate the differentiation of spermatogonia in the 3D culture system.
Collapse
Affiliation(s)
- Amirhessam Eskafi Noghani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Reza Asadpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Adel Saberivand
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran.
| | - Kenny A Rodriguez-Wallberg
- Department of Oncology-Pathology, Karolinska Institutet, Department of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, Novumhuset Plan 4, SE-141 86, Stockholm, Sweden.
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
4
|
Noghani AE, Asadpour R, Saberivand A, Mazaheri Z, Hamidian G. Effect of NMDA receptor agonist and antagonist on spermatogonial stem cells proliferation in 2- and 3- dimensional culture systems. Mol Biol Rep 2022; 49:2197-2207. [PMID: 35000063 DOI: 10.1007/s11033-021-07041-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The main purpose of this study was to investigate the effect of D-serine (DS) and Dizocilpine (MK-801) on the proliferation of spermatogonial stem cells (SSCs) in two-dimensional (2D) and three-dimensional (3D) culture systems. METHODS AND RESULTS The SSCs of male NMRI mice were isolated by enzymatic digestion and cultured for two weeks. Then, the identity of SSCs was validated by anti-Plzf and anti-GFR-α1 antibodies via immunocytochemistry (ICC). The proliferation capacity of SSCs was evaluated by their culture on a layer of the decellularized testicular matrix (DTM) prepared from mouse testis, as well as two-dimensional (2D) with different mediums. After two weeks of the initiation of proliferation culture on 3D and 2D medium, the pre-meiotic at the mRNA and protein levels were evaluated via qRT-PCR and flow cytometry methods, respectively. The results showed that the proliferation rate of SSCs in 3D culture with 50 mM glutamic acid and 20 mM D-serine was significantly different from other groups after 14 days treatment. mRNA expression levels of promyelocytic leukemia zinc finger (Plzf) in 3D cultures supplemented by 20 mM D-serine and 50 mM glutamic acid were considerably higher than the 3D control group (p < 0.001). The flow cytometry analysis revealed that the amount of Plzf in the 2D-culture groups of SSCs with 20 mM MK-801 was considerably lower compared to the 2D-culture control group (p < 0.001). CONCLUSIONS This study indicated that decellularized testicular matrix supplemented with D-serine and glutamic acid could be considered a promising vehicle to support cells and provide an appropriate niche for the proliferation of SSCs.
Collapse
Affiliation(s)
| | - Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Adel Saberivand
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
5
|
Zhang Q, Wan XX, Hu XM, Zhao WJ, Ban XX, Huang YX, Yan WT, Xiong K. Targeting Programmed Cell Death to Improve Stem Cell Therapy: Implications for Treating Diabetes and Diabetes-Related Diseases. Front Cell Dev Biol 2021; 9:809656. [PMID: 34977045 PMCID: PMC8717932 DOI: 10.3389/fcell.2021.809656] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Stem cell therapies have shown promising therapeutic effects in restoring damaged tissue and promoting functional repair in a wide range of human diseases. Generations of insulin-producing cells and pancreatic progenitors from stem cells are potential therapeutic methods for treating diabetes and diabetes-related diseases. However, accumulated evidence has demonstrated that multiple types of programmed cell death (PCD) existed in stem cells post-transplantation and compromise their therapeutic efficiency, including apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. Understanding the molecular mechanisms in PCD during stem cell transplantation and targeting cell death signaling pathways are vital to successful stem cell therapies. In this review, we highlight the research advances in PCD mechanisms that guide the development of multiple strategies to prevent the loss of stem cells and discuss promising implications for improving stem cell therapy in diabetes and diabetes-related diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xin-xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wen-juan Zhao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xiao-xia Ban
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yan-xia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|