1
|
Mega OO, Oghenetega OB, Victor E, Faith FY, Uchechukwu JG. Quercetin Protects against Levetiracetam induced gonadotoxicity in rats. Toxicology 2023; 491:153518. [PMID: 37098359 DOI: 10.1016/j.tox.2023.153518] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/27/2023]
Abstract
The purpose of this study was to determine whether quercetin may counteract the negative effects of levetiracetam on rat reproductive capabilities by examining its influence on a few reproductive parameters following levetiracetam administration. Twenty (20) experimental rats were employed, with five (n = 5) animals per treatment group. Rats in group 1 received saline (10mL/kg, p.o.) which served as control. Quercetin (20mg/kg, p.o./day) was given to groups 2 and 4 for 28 days starting from 29 to 56 days, respectively. However, animals in groups 3-4 received LEV (300mg/kg) once daily for 56 days with a 30-minute break in between treatments. All rats had their serum sex hormone levels, sperm characteristics, testicular antioxidant capability, and levels of oxido-inflammatory/apoptotic mediators evaluated. Additionally, the expression of proteins associated to BTB, autophagy, stress response was examined in rat testes. LEV increased sperm morphological defects and decreased sperm motility, sperm viability, sperm count body weight and testes weight, MDA and 8OHdG levels in the testis of LEV-treated rats were elevated, while antioxidant enzyme expression was concurrently decreased. Additionally, it reduced the levels of serum gonadotropins, testosterone, mitochondrial membrane potential, and cytochrome C liberation into the cytosol from the mitochondria. Caspase-3 and Caspase-9 activity increased. While Bcl-2, Cx-43, Nrf2, HO-1, mTOR, and Atg-7 levels were lowered, NOX-1, TNF-α, NF-kß, IL-1ß, and tDFI levels increased. Histopathological scoring provided further support for the decreased spermatogenesis. In contrast to all of these gonadotoxic effects of LEV, improvements in LEV-induced gonadal damage were seen through upregulation of Nrf2/ HO-1, Cx-43/NOX-1, mTOR/Atg-7 expression and attenuation of hypogonadism, poor sperm quality, mitochondria-mediated apoptosis, and oxidative inflammation due to quercetin post-treatment. The modulation of Nrf2/HO-1, /mTOR/Atg-7 and Cx-43/NOX-1 levels and the inhibition of mitochondria-mediated apoptosis and oxido-inflammation in LEV-induced gonadotoxicity in rats suggest that quercetin may hold promise as a possible therapeutic treatment.
Collapse
Affiliation(s)
- Oyovwi O Mega
- Department of Physiology, Adeleke University, Ede, Osun State, Nigeria; Department of Hunan Physiology, Achievers University, Owo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria.
| | - Onome B Oghenetega
- Department of Physiology, School of Basic Medical Science, Babcock University, Illisan- Ogun State; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| | - Emojevwe Victor
- Department of Physiology, University of Medical Sciences, Ondo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| | - Falajiki Y Faith
- Department of Hunan Physiology, Achievers University, Owo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| | - Joseph Gregory Uchechukwu
- Department of Physiology, University of Medical Sciences, Ondo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
2
|
Atli Eklioglu O, Ilgin S. Adverse effects of antiepileptic drugs on hormones of the hypothalamic-pituitary-gonadal axis in males: A review. Toxicology 2022; 465:153043. [PMID: 34800598 DOI: 10.1016/j.tox.2021.153043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/31/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
The HPG axis is critical in the maintenance of spermatogenesis and sexual function in males. The GnRH-releasing neurons of the hypothalamus are the axis's main hierarchical element. These neurons make connections with different areas of the brain to regulate the release of GnRH. Neurotransmitters have a critical in the connections between these neurons. So, neurotransmitters can inhibit or stimulate the release of GnRH by affecting GnRH-releasing neurons. In neurological disorders, neurotransmitter's activities inevitably change; therefore, these changes can affect the HPG axis via affecting GnRH-releasing neurons, just like in epilepsy. Many investigations have attracted attention to be decreased fertility potential in males with epilepsy. It has been stated that changes in the HPG axis hormone levels have been found in these patients. Moreover, it has also been observed that sperm quality decreased in patients. It has been emphasized that a decrease in sperm quality may be related to both epilepsy and AEDs. It has been shown that AEDs caused decreased sperm quality by impairing the HPG axis, so they act like endocrine-disrupting chemicals. AEDs can affect fertility and cause additive adverse effects in terms of sperm quality together with epilepsy. Therefore, it is crucial to investigate the adverse reproductive effects of AEDs, which are frequently used during reproductive ages, and determine the role of the HPG axis on potential reproductive pathologies.
Collapse
Affiliation(s)
- Ozlem Atli Eklioglu
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Eskisehir, Turkey
| | - Sinem Ilgin
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Eskisehir, Turkey.
| |
Collapse
|
3
|
Osuntokun OS, Babatunde AA, Olayiwola G, Atere TG, Oladokun OO, Adedokun KI. Assessment of the biomarkers of hepatotoxicity following carbamazepine, levetiracetam, and carbamazepine-levetiracetam adjunctive treatment in male Wistar rats. Toxicol Rep 2021; 8:592-598. [PMID: 33786324 PMCID: PMC7994541 DOI: 10.1016/j.toxrep.2021.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 11/15/2022] Open
Abstract
Objective This study examined some of the biomarkers of hepatotoxicity following chronic treatment with carbamazepine (CBZ), levetiracetam (LEV), and CBZ + LEV adjunctive treatment in male rats. Method Twenty-four male Wistar rats (140-150 g) were randomized into four groups (n = 6) to receive oral dose of normal saline (0.1 mL), CBZ (25 mg/kg), LEV (50 mg/kg) or sub-therapeutic dose of CBZ (12.5 mg/kg) together with LEV (25 mg/kg) for 28 days. Activities of the liver enzymes and oxidative stress markers were determined while liver histomorphology was also carried out. Data were analyzed using descriptive and inferential statistics. The results were presented as mean ± SEM in graphs or tables, while the level of significance was taken at p < 0.05. Results The activities of alkaline-phosphatase and malondialdehyde concentrations increased significantly in all the drug treatment groups, while the activities of superoxide dismutase decreased significantly following CBZ, and CBZ + LEV treatment. Alanine-aminotransferase activities increased significantly in the CBZ and CBZ + LEV treated rats compared with control. The liver section of CBZ treated rats showed mild vascular congestion. Conclusion None of these AEDs treatment is devoid of hepatotoxicity. However, the adverse effects in CBZ were greater than LEV, or CBZ + LEV adjunctive treatment.
Collapse
Affiliation(s)
- Opeyemi Samson Osuntokun
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University Osogbo, Nigeria
| | - Ademola Adeniyi Babatunde
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University Osogbo, Nigeria
| | - Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Tope Gafar Atere
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Olayemi Olutobi Oladokun
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University Osogbo, Nigeria
| | - Kabiru Isola Adedokun
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University Osogbo, Nigeria
| |
Collapse
|