1
|
Song Z, Xu S, Gu X, Feng Q, Wang C. LncRNA PITPNA-AS1 mediates the diagnostic potential of miR-129-5p in prostate cancer. BMC Urol 2024; 24:146. [PMID: 39003446 PMCID: PMC11245843 DOI: 10.1186/s12894-024-01528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND LncRNA has an effective value in many diseases, which has long been applied in the diagnosis, treatment and prognosis of prostate cancer. This study focused on lncRNA PITPNA-AS1, and its diagnostic potential in prostate cancer has been explored. METHODS The expression of PITPNA-AS1 and miR-129-5p in prostate cancer serum and sample cells was determined by real-time quantitative polymerase chain reaction (RT-qPCR). The relationship between the expression of PITPNA-AS1 and clinicopathological parameters was considered. ROC curve prompted the diagnostic value of PITPNA-AS1. The effect of PITPNA-AS1 on prostate cancer cells was verified using vitro cells assay. Luciferase activity assay and RIP assay demonstrated the sponge relationship of PITPNA-AS1 to miR-129-5p. RESULTS PITPNA-AS1 level was increased, while miR-129-5p was obviously decreased in prostate cancer. PITPNA-AS1 expression was associated with Gleason grade, lymph node metastasis and TNM stage in patients. The area under the curve (AUC) was 0.910, with high sensitivity and specificity. PITPNA-AS1 was elucidated to directly target miR-129-5p, whereas silencing PITPNA-AS1 negatively affected prostate cancer cell proliferation, migration and invasion. Intervention of miR-129-5p inhibitor reversed the effect of silencing PITPNA-AS1 on cells. CONCLUSIONS PITPNA-AS1 was relatively highly expressed in prostate cancer and mediated the pathophysiological process of patients, which may serve as a diagnostic indicator. Silencing of the PITPNA-AS1 sponge miR-129-5p inhibited the biological function of the cells, indicating that PITPNA-AS1 may represent a novel therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Zhaolu Song
- Department of Urology Surgery, Jiaozhou Central Hospital of Qingdao, Shandong, 266300, China
| | - Silei Xu
- Medical School of University of Electronic Science and Technology of China, Chengdu, 610051, China
| | - Xiaohui Gu
- Department of Urinary Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, No. 32, West Section 2, 1st Ring Road, Qingyang District, Chengdu, 610031, China
| | - Qiang Feng
- Department of Urinary Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, No. 32, West Section 2, 1st Ring Road, Qingyang District, Chengdu, 610031, China.
| | - Chang Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou City, 510080, Guangdong Province, China.
| |
Collapse
|
2
|
Wang Z, Liu L, Li Z, Liu X, Wang J, Wang J, Jiang G, Yu H. LncRNA LINC01278 Regulates the Prognosis and Related Mechanisms of Gastric Cancer by Targeting miR-129-5p. J Environ Pathol Toxicol Oncol 2024; 43:43-52. [PMID: 39016140 DOI: 10.1615/jenvironpatholtoxicoloncol.2024053208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Gastric cancer, a prevalent malady within the digestive tract, has a complex pathological mechanism and numerous patients. The regulation of gastric cancer process by long non-coding RNA (lncRNA) presented new prospects for the study of its molecular mechanism and the treatment of patients. The abnormal expressed genes in gastric cancer were screened by GSE193109 dataset. The correlation between LINC01278 and the likelihood of survival in patients suffering from gastric cancer was investigated by Kaplan-Meier survival curve and multivariate Cox analysis. LINC01278 in gastric cancer tissue samples and cells was verified via RT-qPCR. The cell counting kit-8 (CCK-8) and transwell assay were selected to detect the growth activity of gastric cancer cells. The association between LINC01278 and miR-129-5p was validated through luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) assay. Correlation analysis of clinical features revealed an association between LINC01278 and the prognosis in gastric cancer patients. LINC01278 was actively expressed in gastric cancer, which exerts a tumor-promoting effect. Silencing LINC01278 suppressed the biological function of tumor cells through spongiform miR-129-5p. LINC01278 has the potential to serve as a novel biomarker, offering new avenues of research for the prognosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Zhenhua Wang
- Department of Hepatobiliary Pancreatogastric Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Caner Hospital Chinese Academy of Medical Science/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Liyan Liu
- Department of Gastroenterology, Jilin Province FAW General Hospital, Changchun, 130013, China
| | - Zhengliang Li
- Second Department of Radiotherapy, Yantaishan Hospital, Yantai, 264003, China
| | - Xiaojing Liu
- Department of Traditional Chinese Medicine, Yantai Center for Food and Drug Control, Yantai, 264003, China
| | - Jundong Wang
- Department of Traditional Chinese Medicine, Yantai Center for Food and Drug Control, Yantai, 264003, China
| | - Jiaxi Wang
- Department of Business Management Division II, Yantai Center for Food and Drug Control, Yantai, 264003, China
| | - Guoxiang Jiang
- Second Department of Radiotherapy, Yantaishan Hospital, Yantai, 264003, China
| | | |
Collapse
|
3
|
Rezaei S, Nikpanjeh N, Rezaee A, Gholami S, Hashemipour R, Biavarz N, Yousefi F, Tashakori A, Salmani F, Rajabi R, Khorrami R, Nabavi N, Ren J, Salimimoghadam S, Rashidi M, Zandieh MA, Hushmandi K, Wang Y. PI3K/Akt signaling in urological cancers: Tumorigenesis function, therapeutic potential, and therapy response regulation. Eur J Pharmacol 2023; 955:175909. [PMID: 37490949 DOI: 10.1016/j.ejphar.2023.175909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
In addition to environmental conditions, lifestyle factors, and chemical exposure, aberrant gene expression and mutations involve in the beginning and development of urological tumors. Even in Western nations, urological malignancies are among the top causes of patient death, and their prevalence appears to be gender dependent. The prognosis for individuals with urological malignancies remains dismal and unfavorable due to the ineffectiveness of conventional treatment methods. PI3K/Akt is a popular biochemical mechanism that is activated in tumor cells as a result of PTEN loss. PI3K/Akt escalates growth and metastasis. Moreover, due to the increase in tumor cell viability caused by PI3K/Akt activation, cancer cells may acquire resistance to treatment. This review article examines the function of PI3K/Akt in major urological tumors including bladder, prostate, and renal tumors. In prostate, bladder, and kidney tumors, the level of PI3K and Akt are notably elevated. In addition, the activation of PI3K/Akt enhances the levels of Bcl-2 and XIAP, hence increasing the tumor cell survival rate. PI3K/Akt ] upregulates EMT pathways and matrix metalloproteinase expression to increase urological cancer metastasis. Furthermore, stimulation of PI3K/Akt results in drug- and radio-resistant cancers, but its suppression by anti-tumor drugs impedes the tumorigenesis.
Collapse
Affiliation(s)
- Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Negin Nikpanjeh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Reza Hashemipour
- Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Negin Biavarz
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Tashakori
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Chen YC, Li DB, Wang DL, Peng H. Comprehensive analysis of distal-less homeobox family gene expression in colon cancer. World J Gastrointest Oncol 2023; 15:1019-1035. [PMID: 37389108 PMCID: PMC10302991 DOI: 10.4251/wjgo.v15.i6.1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 04/27/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND The distal-less homeobox (DLX) gene family plays an important role in the development of several tumors. However, the expression pattern, prognostic and diagnostic value, possible regulatory mechanisms, and the relationship between DLX family genes and immune infiltration in colon cancer have not been systematically reported.
AIM We aimed to comprehensively analyze the biological role of the DLX gene family in the pathogenesis of colon cancer.
METHODS Colon cancer tissue and normal colon tissue samples were collected from the Cancer Genome Atlas and Gene Expression Omnibus databases. Wilcoxon rank sum test and t-test were used to assess DLX gene family expression between colon cancer tissue and unpaired normal colon tissue. cBioPortal was used to analyze DLX gene family variants. R software was used to analyze DLX gene expression in colon cancer and the relationship between DLX gene family expression and clinical features and correlation heat map. The survival package and Cox regression module were used to assess the prognostic value of the DLX gene family. The pROC package was used to analyze the diagnostic value of the DLX gene family. R software was used to analyze the possible regulatory mechanisms of DLX gene family members and related genes. The GSVA package was used to analyze the relationship between the DLX gene family and immune infiltration. The ggplot2, the survminer package, and the clusterProfiler package were used for visualization.
RESULTS DLX1/2/3/4/5 were significantly aberrantly expressed in colon cancer patients. The expression of DLX genes were associated with M stage, pathologic stage, primary therapy outcome, residual tumor, lymphatic invasion, T stage, N stage, age, perineural invasion, and history of colon polyps. DLX5 was independently correlated with the prognosis of colon cancer in multivariate analysis. DLX1/2/3/4/5/6 were involved in the development and progression of colon cancer by participating in immune infiltration and associated pathways, including the Hippo signaling pathway, the Wnt signaling pathway, several signaling pathways regulating the pluripotency of stem cells, and Staphylococcus aureus infection.
CONCLUSION The results of this study suggest a possible role for the DLX gene family as potential diagnostic or prognostic biomarkers and therapeutic targets in colon cancer.
Collapse
Affiliation(s)
- Yong-Cheng Chen
- Department of General Surgery (Endoscopic Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
| | - Dong-Bing Li
- Department of Medicine, ChosenMed Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Dong-Liang Wang
- Department of Medicine, ChosenMed Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Hui Peng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
- Department of General Surgery (Anorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
| |
Collapse
|
5
|
Zhang H, Zhou Q, Jiang J. Circ_0027446 induces CLDN1 expression to promote papillary thyroid cancer cell malignancy by binding to miR-129-5p. Pathol Res Pract 2022; 238:154095. [PMID: 36058014 DOI: 10.1016/j.prp.2022.154095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Previous data have shown that circular RNA (circRNA) is a key regulator in papillary thyroid cancer (PTC). However, the role and the detailed mechanism of circ_0027446 in PTC progression have not been reported. METHODS Circ_0027446, miR-129-5p, claudin 1 (CLDN1), C-myc and MMP2 expression were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), Western Blot or immunohistochemistry (IHC) assay. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. Cell proliferation was investigated by 5-Ethynyl-2'-deoxyuridine (EdU) assay and cell colony formation assay. Cell apoptosis, invasion and migration were assessed by flow cytometry analysis, transwell assay and wound-healing assay, respectively. Dual-luciferase reporter assay was conducted to identify the associations among circ_0027446, miR-129-5p and CLDN1. The effect of circ_0027446 on PTC cell malignancy in vivo was revealed by a xenograft mouse model assay. RESULTS Circ_0027446 and CLDN1 expression were significantly upregulated, while miR-129-5p expression was downregulated in PTC tissues and cells. High circ_0027446 expression was closely associated with the poor prognosis of PTC patients. Circ_0027446 depletion inhibited PTC cell proliferation, migration and invasion but increased cell apoptosis. In addition, circ_0027446 acted as a miR-129-5p sponge, and miR-129-5p bound to CLDN1. Moreover, miR-129-5p inhibitors attenuated circ_0027446 depletion-induced effects in PTC cells. CLDN1 also participated in the regulation of miR-129-5p in PTC cell tumor properties. Importantly, circ_0027446 mediated CLDN1 expression by interacting with miR-129-5p. In vivo data showed that the decreased expression of circ_0027446 led to delayed tumor formation. CONCLUSION Circ_0027446 contributed to PTC cell tumor properties by regulating the miR-129-5p/CLDN1 pathway, showing circ_0027446 might be a therapeutic target in PTC.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Ultrasound, HongHui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China.
| | - Qi Zhou
- Department of ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jue Jiang
- Department of ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|