1
|
Balder P, Jones C, Coward K, Yeste M. Sperm chromatin: Evaluation, epigenetic signatures and relevance for embryo development and assisted reproductive technology outcomes. Eur J Cell Biol 2024; 103:151429. [PMID: 38905808 DOI: 10.1016/j.ejcb.2024.151429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
Sperm chromatin is distinct from somatic cell chromatin, as a result of extensive remodeling during the final stages of spermatogenesis. In this process, the majority of histones is replaced with protamines. The chromatin is consequently highly condensed and inert, which facilitates protection of the DNA. The sperm epigenomic landscape is shaped by histone retention, histone and protamine modification, DNA methylation, and RNAs. In recent years, sperm chromatin integrity and its epigenetic marks have been increasingly studied, and the constitution of sperm chromatin is steadily being uncovered. This growing body of research prompts assessment of the frequently overlooked involvement of sperm in fertility and embryonic development. Moreover, numerous endogenous and exogenous factors are known to affect sperm chromatin, which may in turn impact the reproductive success. Concerns have been raised about the effects of assisted reproductive technology (ART) on the sperm epigenome, embryonic development and offspring health. This review examines the structure and epigenetic signatures of sperm chromatin in the context of fertility and early embryonic development. Additionally, sperm chromatin evaluation and causes of aberrant integrity are outlined. Building on the knowledge discussed in the current review, future research should aim to elucidate the intricate relationship between all aspects of sperm chromatin and embryo development. This could lead to the uncovering of new targets for treating infertility, as well as the acquisition of much needed insights into the possible reciprocal association between ART and sperm chromatin integrity.
Collapse
Affiliation(s)
- Pauline Balder
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona ES-08010, Spain.
| |
Collapse
|
2
|
Koohestanidehaghi Y, Khalili MA, Fesahat F, Seify M, Mangoli E, Kalantar SM, Annarita Nottola S, Macchiarelli G, Grazia Palmerini M. Detrimental effects of radiofrequency electromagnetic waves emitted by mobile phones on morphokinetics, oxidative stress, and apoptosis in mouse preimplantation embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122411. [PMID: 37598936 DOI: 10.1016/j.envpol.2023.122411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Due to the increasing use of smart mobile phones, the impact of radiofrequency electromagnetic radiation (RF-EMR) on reproductive health has become a serious concern. This study investigated the effect of mobile phone RF-EMR with frequency 900-1800 MHZ on the mouse embryo morphokinetics and genotoxic effect in laboratory conditions. After ovarian stimulation in mice, the MII oocytes were collected and underwent by in vitro fertilization (IVF) method. The generated zygotes were divided into control and exposed groups. Then, the zygotes with 30 min of exposure to mobile phone RF-EMR, and the control zygotes without exposure, were incubated in the time-lapse for 5 days. The intracellular reactive oxygen species (ROS) level, morphokinetic, embryo viability rate, and Gene expression were evaluated. Exposure of zygotes to RF-EMR by inducing ROS caused a significant decrease in blastocyst viability (87.85 ± 2.86 versus 94.23 ± 2.44), delay in cleavage development (t3-t12) and also increased the time (in hours) to reach the blastocyst stage (97.44 ± 5.21 versus 92.56 ± 6.7) compared to the control group. A significant increase observed in mRNA levels of Hsp70 in exposed animals; while Sod gene expression showed a significant down-regulation in this group compared to the controls, respectively. However, there was no significant change in the transcript level of proapoptotic and antiapoptotic genes in embryos of the exposed group compared to the controls. RF-EMR emitted by mobile phone with a frequency of 900-1800 MHZ, through inducing the production of ROS and oxidative stress, could negatively affect the growth and development as well as the transcript levels of oxidative stress associated genes in the preimplantation embryos of mice.
Collapse
Affiliation(s)
- Yeganeh Koohestanidehaghi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ali Khalili
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Seify
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Esmat Mangoli
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Department of Genetics, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, Rome, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
3
|
Nyberg R, McCredden J, Hardell L. The European Union assessments of radiofrequency radiation health risks - another hard nut to crack (Review). REVIEWS ON ENVIRONMENTAL HEALTH 2023; 0:reveh-2023-0046. [PMID: 37609829 DOI: 10.1515/reveh-2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/30/2023] [Indexed: 08/24/2023]
Abstract
In 2017 an article was published on the unwillingness of the WHO to acknowledge the health effects associated with the use of wireless phones. It was thus stated that the WHO is 'A Hard Nut to Crack'. Since then, there has been no progress, and history seems to be repeating in that the European Union (EU) is following in the blind man's footsteps created by the WHO. Despite increasing evidence of serious negative effects from radiofrequency radiation on human health and the environment, the EU has not acknowledged that there are any risks. Since September 2017, seven appeals by scientists and medical doctors have been sent to the EU requesting a halt to the roll-out of the fifth generation of wireless communication (5G). The millimeter waves (MMW) and complex waveforms of 5G contribute massively harmful additions to existing planetary electromagnetic pollution. Fundamental rights and EU primary law make it mandatory for the EU to protect the population, especially children, from all kinds of harmful health effects of wireless technology. However, several experts associated with the WHO and the EU have conflicts of interest due to their ties to industry. The subsequent prioritizing of economic interests is resulting in human and planetary health being compromised. Experts must make an unbiased evaluation with no conflicts of interest. The seven appeals to the EU have included requests for immediate protective action, which have been ignored. On the issue of wireless radiation and the health of citizens, the EU seems to be another hard nut to crack.
Collapse
Affiliation(s)
- Rainer Nyberg
- Åbo Akademi University Faculty of Education and Welfare Studies, Vasa, Finland
| | - Julie McCredden
- Oceania Radiofrequency Scientific Advisory Association, Brisbane, QLD, Australia
| | - Lennart Hardell
- The Environment and Cancer Research Foundation, Orebro, Sweden
| |
Collapse
|
4
|
Doostabadi MR, Mangoli E, Marvast LD, Dehghanpour F, Maleki B, Torkashvand H, Talebi AR. Microfluidic devices employing chemo- and thermotaxis for sperm selection can improve sperm parameters and function in patients with high DNA fragmentation. Andrologia 2022; 54:e14623. [PMID: 36379719 DOI: 10.1111/and.14623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Conventional sperm processing uses centrifugation has a negative effect on sperm parameters and DNA integrity. We designed and fabricated a novel microfluid device based on chemotaxis and thermotaxis, and compared it with the swim-up method. Twenty normal samples with high DNA fragmentation were included. Each sample was divided into four groups: Group 1, control, Group 2: sperm selection by thermotaxis, Group 3: sperm selection by chemotaxis, and Group 4: sperm selection with thermotaxis and chemotaxis. We used cumulus cells in a microfluid device to create chemotaxis, and, two warm stages to form a temperature gradient for thermotaxis. The spermatozoa were assessed based on the concentration, motility, and fine morphology using Motile Sperm Organelle Morphology Examination, mitochondrial membrane potential (MMP), acrosome reaction (AR), and sperm DNA fragmentation. Concentration (22.40 ± 5.39 vs. 66.50 ± 19.21; p < 0.001) and DNA fragmentation (12.30 ± 3.96% vs. 17.95 ± 2.89%; p < 0.001) after selection in the chemotaxis and thermotaxis microfluid device were significantly lower than control group. The progressive motility (93.75 ± 4.39% vs. 75.55 ± 5.86%, p < 0.001), normal morphology (15.45 ± 2.50% vs. 10.35 ± 3.36, p < 0.001), MMP (97.65 ± 1.81% vs. 94 ± 3.89%, p = 0.02), and AR status (79.20 ± 5.28% vs. 31.20 ± 5.24%, p < 0.001) in the chemotaxis and thermotaxis microfluid device were significantly increased compared to control group. According to these findings, spermatozoa that have penetrated the cumulus oophorus have better morphology and motility, as well as acrosome reactivity and DNA integrity.
Collapse
Affiliation(s)
- Mohammad Reza Doostabadi
- International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Royesh Infertility Center, Birjand University of Medical Science, Birjand, Iran
| | - Esmat Mangoli
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Laleh Dehghan Marvast
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Dehghanpour
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behnam Maleki
- Infertility Center, Department of Obstetrics and Gynecology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Torkashvand
- Department of Anatomical Science, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Talebi
- International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
5
|
Microwave Radiation and the Brain: Mechanisms, Current Status, and Future Prospects. Int J Mol Sci 2022; 23:ijms23169288. [PMID: 36012552 PMCID: PMC9409438 DOI: 10.3390/ijms23169288] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
Modern humanity wades daily through various radiations, resulting in frequent exposure and causing potentially important biological effects. Among them, the brain is the organ most sensitive to electromagnetic radiation (EMR) exposure. Despite numerous correlated studies, critical unknowns surround the different parameters used, including operational frequency, power density (i.e., energy dose), and irradiation time that could permit reproducibility and comparability between analyses. Furthermore, the interactions of EMR with biological systems and its precise mechanisms remain poorly characterized. In this review, recent approaches examining the effects of microwave radiations on the brain, specifically learning and memory capabilities, as well as the mechanisms of brain dysfunction with exposure as reported in the literature, are analyzed and interpreted to provide prospective views for future research directed at this important and novel medical technology for developing preventive and therapeutic strategies on brain degeneration caused by microwave radiation. Additionally, the interactions of microwaves with biological systems and possible mechanisms are presented in this review. Treatment with natural products and safe techniques to reduce harm to organs have become essential components of daily life, and some promising techniques to treat cancers and their radioprotective effects are summarized as well. This review can serve as a platform for researchers to understand the mechanism and interactions of microwave radiation with biological systems, the present scenario, and prospects for future studies on the effect of microwaves on the brain.
Collapse
|
6
|
Spaggiari G, Romeo M, Casarini L, Granata ARM, Simoni M, Santi D. Human fertility and sleep disturbances: A narrative review. Sleep Med 2022; 98:13-25. [PMID: 35772248 DOI: 10.1016/j.sleep.2022.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Many factors may be hidden behind the global fertility decline observed in Western countries. Alongside the progressively increased age of infertile couples, environmental and behavioural factors, including non-optimal lifestyle habits, should be considered. Among these, sleep disorders have been suggested to be linked to human fertility. METHODS This is a narrative review, describing first sleep physiology, its disturbances, and the tools able to quantify sleep dysfunction. Then, we consider all available studies aimed at investigating the connection between sleep disorders and human fertility, providing a comprehensive view on this topic. RESULTS Forty-two studies investigating the relationship between sleep habits and human reproduction were included. All the published evidence was grouped according to the aspect of human fertility considered, i.e. i) female reproductive functions, ii) male reproductive functions, iii) natural conception and iv) assisted reproduction. For each of the sub-groups considered, the connection between sleep dysregulation and human fertility was classified according to specific sleep characteristics, such as sleep duration, quality, and habits. In addition, possible physio-pathological mechanisms proposed to support the link between sleep and fertility were summarized. CONCLUSION This review summarizes the most relevant findings about the intricate and still largely unknown network of molecular pathways involved in the regulation of circadian homeostasis, to which sleep contributes, essential for reproductive physiology. Thus, many mechanisms seem correlate sleep disorders to reproductive health, such as adrenal activation, circadian dysregulation, and genetic influences. This review highlights the need to properly designed trials on the topic.
Collapse
Affiliation(s)
- Giorgia Spaggiari
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy
| | - Marilina Romeo
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Livio Casarini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio R M Granata
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|