1
|
Klyosova E, Azarova I, Petrukhina I, Khabibulin R, Polonikov A. The rs2341471-G/G genotype of activating transcription factor 6 (ATF6) is the risk factor of type 2 diabetes in subjects with obesity or overweight. Int J Obes (Lond) 2024; 48:1638-1649. [PMID: 39134692 DOI: 10.1038/s41366-024-01604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Numerous studies have demonstrated that the onset of type 2 diabetes (T2D) is linked to the reduction in ß-cell mass caused by apoptosis, a process initiated by endoplasmic reticulum (ER) stress. The aim of this study was to investigate the associations between single nucleotide polymorphisms (SNPs) in the ATF6 gene (activating transcription factor 6), a key sensor of ER stress, and T2D susceptibility. METHODS The study involved 3229 unrelated individuals, including 1569 patients with T2D and 1660 healthy controls from Central Russia. Four functionally significant intronic SNPs, namely rs931778, rs90559, rs2341471, and rs7517862, were genotyped using the MassARRAY-4 system. RESULTS The rs2341471-G/G genotype of ATF6 was found to be associated with an increased risk of T2D (OR = 1.61, 95% CI 1.37-1.90, PFDR < 0.0001). However, a BMI-stratified analysis showed that this genotype and haplotypes CGGA and TAGA are associated with T2D risk exclusively in subjects with obesity or overweight (PFDR < 0.05). Despite these patients being found to have higher consumption of high-carbohydrate and high-calorie diets compared to normal-weight individuals (P < 0.0001), the influence of the rs7517862 polymorphism on T2D risk was observed independently of these dietary habits. Functional SNP annotation revealed the following: (1) the rs2341471-G allele is associated with increased ATF6 expression; (2) the SNP is located in a region exhibiting enhancer activity epigenetically regulated in pancreatic islets; (3) the rs2341471-G was predicted to create binding sites for 18 activating transcription factors that are part of gene-regulatory networks controlling glucose metabolism and maintaining proteostasis. CONCLUSIONS The present study revealed, for the first time, a strong association between the rs2341471-G/G ATF6 genotype and an increased risk of type 2 diabetes in people with obesity or overweight, regardless of known dietary risk factors. Further research is needed to support the potential of silencing the ATF6 gene as a means for the treatment and prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041, Kursk, Russia
| | - Iuliia Azarova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041, Kursk, Russia
| | - Irina Petrukhina
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
| | - Ramis Khabibulin
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041, Kursk, Russia.
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia.
| |
Collapse
|
2
|
Contreras W, Groenendyk J, Gentzel M, Schönberg PY, Buchholz F, Michalak M, Schröder B, Mentrup T. Selective regulation of aspartyl intramembrane protease activity by calnexin. Cell Mol Life Sci 2024; 81:441. [PMID: 39460794 PMCID: PMC11513070 DOI: 10.1007/s00018-024-05478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Signal peptide peptidase-like 2c (SPPL2c) is a testis-specific aspartyl intramembrane protease that contributes to male gamete function both by catalytic and non-proteolytic mechanisms. Here, we provide an unbiased characterisation of the in vivo interactome of SPPL2c identifying the ER chaperone calnexin as novel binding partner of this enzyme. Recruitment of calnexin specifically required the N-glycosylation within the N-terminal protease-associated domain of SPPL2c. Importantly, mutation of the single glycosylation site of SPPL2c or loss of calnexin expression completely prevented SPPL2c-mediated intramembrane proteolysis of all tested substrates. By contrast and despite rather promiscuous binding of calnexin to other SPP/SPPL proteases, expression of the chaperone was exclusively required for SPPL2c-mediated proteolysis. Despite some impact on the stability of SPPL2c most presumably due to assistance in folding of the luminal domain of the protease, calnexin appeared to be recruited rather constitutively to the protease thereby boosting its catalytic activity. In summary, we describe a novel, highly specific mode of intramembrane protease regulation, highlighting the need to systematically approach control mechanisms governing the proteolytic activity of other members of the aspartyl intramembrane protease family.
Collapse
Affiliation(s)
- Whendy Contreras
- Institute of Physiological Chemistry, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Marc Gentzel
- Core Facility Molecular Analysis - Mass Spectrometry, Mass Spectrometry & Proteomics, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Pascal Y Schönberg
- Medical Faculty, University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307, Dresden, Germany
| | - Frank Buchholz
- Medical Faculty, University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307, Dresden, Germany
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Bernd Schröder
- Institute of Physiological Chemistry, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Torben Mentrup
- Institute of Physiological Chemistry, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
3
|
Nair KA, Liu B. Navigating the landscape of the unfolded protein response in CD8 + T cells. Front Immunol 2024; 15:1427859. [PMID: 39026685 PMCID: PMC11254671 DOI: 10.3389/fimmu.2024.1427859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Endoplasmic reticulum stress occurs due to large amounts of misfolded proteins, hypoxia, nutrient deprivation, and more. The unfolded protein is a complex intracellular signaling network designed to operate under this stress. Composed of three individual arms, inositol-requiring enzyme 1, protein kinase RNA-like ER kinase, and activating transcription factor-6, the unfolded protein response looks to resolve stress and return to proteostasis. The CD8+ T cell is a critical cell type for the adaptive immune system. The unfolded protein response has been shown to have a wide-ranging spectrum of effects on CD8+ T cells. CD8+ T cells undergo cellular stress during activation and due to environmental insults. However, the magnitude of the effects this response has on CD8+ T cells is still understudied. Thus, studying these pathways is important to unraveling the inner machinations of these powerful cells. In this review, we will highlight the recent literature in this field, summarize the three pathways of the unfolded protein response, and discuss their roles in CD8+ T cell biology and functionality.
Collapse
Affiliation(s)
- Keith Alan Nair
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
4
|
Santos LC, dos Anjos Cordeiro JM, Cunha MCDSG, Santos BR, de Oliveira LS, da Silva AL, Barbosa EM, Niella RV, de Freitas GJC, Santos DDA, Serakides R, Ocarino NDM, Borges SC, de Lavor MSL, Silva JF. Kisspeptin-10 Improves Testicular Redox Status but Does Not Alter the Unfolded Protein Response (UPR) That Is Downregulated by Hypothyroidism in a Rat Model. Int J Mol Sci 2024; 25:1514. [PMID: 38338793 PMCID: PMC10855899 DOI: 10.3390/ijms25031514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 02/12/2024] Open
Abstract
Hypothyroidism compromises the testicular redox status and is associated with reduced sperm quality and infertility in men. In this regard, studies have demonstrated the antioxidant potential of kisspeptin in reproductive and metabolic diseases. In this study, we evaluate the effects of kisspeptin-10 (Kp10) on the testicular redox, as well as mediators of the unfolded protein response (UPR) in adult rats with hypothyroidism. Adult male Wistar rats were randomly separated into the Control (n = 15), Hypo (n = 13) and Hypo + Kp10 (n = 14) groups, and hypothyroidism was induced with 6-propyl-2-thiouracil (PTU) for three months. In the last month, half of the hypothyroid animals received Kp10. Testis samples were collected for enzymatic, immunohistochemical and/or gene evaluation of mediators of oxidative stress (TBARs, lipid hydroperoxides (LOOH), ROS, peroxynitrite, SOD, CAT and GPX), endoplasmic reticulum stress (GRP78, ATF6, PERK, CHOP, HO-1 and sXBP1) and antiapoptocytes (BCL-2). Hypothyroidism increased apoptosis index, TBARS and LOOH concentrations, and reduced testicular gene expression of Sod1, Sod2 and Gpx1, as well as the expression of Grp78, Atf6, Ho1 and Chop. Treatment with Kp10, in turn, reduced testicular apoptosis and the production of peroxynitrite, while increased SOD1 and GPX ½ expression, and enzymatic activity of CAT, but did not affect the lower expression of UPR mediators caused by hypothyroidism. This study demonstrated that hypothyroidism causes oxidative stress and dysregulated the UPR pathway in rat testes and that, although Kp10 does not influence the low expression of UPR mediators, it improves the testicular redox status, configuring it as an important antioxidant factor in situations of thyroid dysfunction.
Collapse
Affiliation(s)
- Luciano Cardoso Santos
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (L.C.S.); (J.M.d.A.C.); (M.C.d.S.G.C.); (B.R.S.); (L.S.d.O.); (A.L.d.S.); (E.M.B.); (S.C.B.)
| | - Jeane Martinha dos Anjos Cordeiro
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (L.C.S.); (J.M.d.A.C.); (M.C.d.S.G.C.); (B.R.S.); (L.S.d.O.); (A.L.d.S.); (E.M.B.); (S.C.B.)
| | - Maria Clara da Silva Galrão Cunha
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (L.C.S.); (J.M.d.A.C.); (M.C.d.S.G.C.); (B.R.S.); (L.S.d.O.); (A.L.d.S.); (E.M.B.); (S.C.B.)
| | - Bianca Reis Santos
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (L.C.S.); (J.M.d.A.C.); (M.C.d.S.G.C.); (B.R.S.); (L.S.d.O.); (A.L.d.S.); (E.M.B.); (S.C.B.)
| | - Luciana Santos de Oliveira
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (L.C.S.); (J.M.d.A.C.); (M.C.d.S.G.C.); (B.R.S.); (L.S.d.O.); (A.L.d.S.); (E.M.B.); (S.C.B.)
| | - Adriana Lopes da Silva
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (L.C.S.); (J.M.d.A.C.); (M.C.d.S.G.C.); (B.R.S.); (L.S.d.O.); (A.L.d.S.); (E.M.B.); (S.C.B.)
| | - Erikles Macêdo Barbosa
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (L.C.S.); (J.M.d.A.C.); (M.C.d.S.G.C.); (B.R.S.); (L.S.d.O.); (A.L.d.S.); (E.M.B.); (S.C.B.)
| | - Raquel Vieira Niella
- Veterinary Hospital, Department of Agricultural and Environmental Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (R.V.N.); (M.S.L.d.L.)
| | - Gustavo José Cota de Freitas
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.J.C.d.F.); (D.d.A.S.)
| | - Daniel de Assis Santos
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.J.C.d.F.); (D.d.A.S.)
| | - Rogéria Serakides
- Department of Veterinary Clinic and Surgery, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.S.); (N.d.M.O.)
| | - Natália de Melo Ocarino
- Department of Veterinary Clinic and Surgery, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.S.); (N.d.M.O.)
| | - Stephanie Carvalho Borges
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (L.C.S.); (J.M.d.A.C.); (M.C.d.S.G.C.); (B.R.S.); (L.S.d.O.); (A.L.d.S.); (E.M.B.); (S.C.B.)
| | - Mário Sérgio Lima de Lavor
- Veterinary Hospital, Department of Agricultural and Environmental Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (R.V.N.); (M.S.L.d.L.)
| | - Juneo Freitas Silva
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (L.C.S.); (J.M.d.A.C.); (M.C.d.S.G.C.); (B.R.S.); (L.S.d.O.); (A.L.d.S.); (E.M.B.); (S.C.B.)
| |
Collapse
|
5
|
Li J, Zheng X. Morphology, Histology, and Transcriptome Analysis of Gonadal Development in Octopus minor (Sasaki, 1920). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1043-1056. [PMID: 37878213 DOI: 10.1007/s10126-023-10258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Octopus minor is an economically important species, but little is known about the histological pattern and regulatory mechanisms during gonadal development. In this study, we investigated the annual changes in total body weight (TW), gonad somatic index (GSI), gonadal histological features, and transcriptome of O. minor. The results indicated that both females and males showed a similar TW trend. The GSI peaked in June in females, while it remained constant at around 3% in males. Nine and four histological stages were observed in ovaries and testes, respectively. Our field sampling results implied that O. minor might have overwintering periods for both eggs and larvae. Transcriptome analysis revealed that a total of 1095 and 2468 genes were significantly expressed during ovarian and testicular development, separately. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis displayed that 126 GO terms and 5 KEGG pathways were significantly enriched in the ovarian group of advanced vitellogenic oocytes vs vitellogenic oocytes (AVO vs VO). The pathways "Ribosomal", "Cell cycle", and "Progesterone-mediated oocyte maturation" were predicted to promote yolk deposition. Additionally, the testicular comparison group of spent vs mature (Spent vs Mature) showed significant enrichment in 674 GO terms and 13 KEGG pathways, suggesting that energy metabolism and cell repair pathways may be involved in the spermatogenesis process. This work revealed the development process of the gonads and shed light on the potential regulatory pathways of O. minor, providing novel insights and laying a molecular basis for artificial breeding.
Collapse
Affiliation(s)
- Jiahua Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiaodong Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
6
|
Xiong X, Huang X, Zhu Y, Hai Z, Fei X, Pan B, Yang Q, Xiong Y, Fu W, Lan D, Zhang X, Li J. Testis-specific knockout of Kdm2a reveals nonessential roles in male fertility but partially compromises spermatogenesis. Theriogenology 2023; 209:9-20. [PMID: 37354760 DOI: 10.1016/j.theriogenology.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/26/2023]
Abstract
Lysine-specific histone demethylase 2 (Kdm2a) is a regulatory factor of histone modifications that participates in gametogenesis and embryonic development. The mis-regulation of Kdm2a can lead to aberrant gene expression, thereby contributing to abnormal cell proliferation, differentiation, apoptosis, and tumorigenesis. However, due to the potential confounding effects that are secondary to the loss of Kdm2a function from the soma in existing whole-animal mutants, the in vivo function of Kdm2a in spermatogenesis for male fertility remains unknown. Herein, we focus on exploring the spatiotemporal expression profile and biological functions of Kdm2a in the spermatogenesis and fertility of male mice. A testis-specific knockout Kdm2a model (Kdm2a cKO) was established by using the Stra8-Cre/loxP recombinase system to explore the roles of Kdm2a in male fertility. Our results showed that Kdm2a was ubiquitously expressed and dynamically distributed in multiple tissues and cell types in the testis of mice. Surprisingly, Kdm2a-deficient adult males were completely fertile and comparable with their control (Kdm2aflox/flox) counterparts. Despite the significantly reduced total number of sperm and density of seminiferous tubules in Kdm2a cKO testis accompanied by the degeneration of spermatogenesis, the fertilization ability and embryonic developmental competence of the Kdm2a cKO were comparable with those of their control littermates, suggesting that Kdm2a disruption did not markedly affect male fertility, at least during younger ages. Furthermore, Kdm2a homozygous mutants exhibited a lower total number and motility of sperm than the control group and showed notably affected serum 17β-estradiol concentration. Interestingly, the transcriptome sequencing revealed that the loss of Kdm2a remarkably upregulated the expression level of Kdm2b. This effect, in turn, may induce compensative effects in the case of Kdm2a deficiency to maintain normal male reproduction. Together, our results reveal that Kdm2a shows spatiotemporal expression during testicular development and that its loss is insufficient to compromise the production of spermatozoa completely. The homologous Kdm2b gene might compensate for the loss of Kdm2a. Our work provides a novel Kdm2a cKO mouse allowing for the efficient deletion of Kdm2a in a testis-specific manner, and further investigated the biological function of Kdm2a and the compensatory effects of Kdm2b. Our study will advance our understanding of underlying mechanisms in spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Xiangyue Huang
- Key Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Yanjin Zhu
- Key Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Zhuo Hai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Xixi Fei
- Key Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Bangting Pan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Qinhui Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Xiaojian Zhang
- Center for Assisted Reproduction, Sichuan Academy of Medical Science, Sichuan Provincial People's Hospital, Chengdu, 610072, PR China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China; Key Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
7
|
Yang X, Guo J, Li W, Li C, Zhu X, Liu Y, Wu X. PPM1H is down-regulated by ATF6 and dephosphorylates p-RPS6KB1 to inhibit progression of hepatocellular carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:164-179. [PMID: 37456776 PMCID: PMC10345229 DOI: 10.1016/j.omtn.2023.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
We have shown previously that polymorphism of activating transcription factor 6 (ATF6) is associated with susceptibility to hepatocellular carcinoma (HCC). Therefore, genes down-regulated by ATF6 might play a tumor-suppressing role. In the present study, we identified that expression of protein phosphatase magnesium- or manganous-dependent 1H (PPM1H) mRNA and protein can be inhibited by ATF6 in hepatoma cells and mice with liver Atf6 knockdown. Tumor tissues from 134 HCC patients were analyzed by immunohistochemistry, and PPM1H exhibited higher expression levels in adjacent para-cancer tissues than in HCC tissues. Therefore, patients with higher expression of PPM1H had a better prognosis. PPM1H inhibited proliferation, migration, and invasion of hepatoma cells. In addition, PPM1H inhibited induced HCC nodule formation as well as tumor xenograft growth in diethylnitrosamine/CCl4-induced HCC mouse model and nude mouse tumorigenicity assay, respectively. A 3D model of PPM1H was obtained by homology multi-template modeling, and ribosomal protein S6 kinase B1 (RPS6KB1) in the bone morphogenetic protein (BMP)/transforming growth factor β (TGF-β) pathway was screened out as the potential substrate of PPM1H by Rosetta. PPM1H could directly dephosphorylate p-RPS6KB1. To conclude, we discovered RPS6KB1 as a new PPM1H dephosphorylation substrate. PPM1H exhibited a suppressive effect on HCC progression by dephosphorylating p-RPS6KB1.
Collapse
Affiliation(s)
- Xiaoshuang Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Jianting Guo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Wei Li
- Department of Interventional Radiology, Affiliated Hospital of Qingdao University, Shandong 266003, P.R. China
| | - Chunrui Li
- Beijing Cloud Computing Key Technique and Application Key Laboratory, Beijing Computing Center, Beijing 100094, P.R. China
| | - Xilin Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Ying Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Xiaopan Wu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| |
Collapse
|
8
|
Zhao Y, Yang L, Su G, Wei Z, Liu X, Song L, Hai C, Wu D, Hao Z, Wu Y, Zhang L, Bai C, Li G. Growth Traits and Sperm Proteomics Analyses of Myostatin Gene-Edited Chinese Yellow Cattle. Life (Basel) 2022; 12:627. [PMID: 35629295 PMCID: PMC9147296 DOI: 10.3390/life12050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
Chinese Yellow Cattle, an ancient and domesticated breed for draft service, provide unique animal genetic resources with excellent genetic features, including crude feed tolerance, good stress resistance, strong adaptability, and tender meat quality; however, their production performance and meat yield are significantly inferior. Herein, the myostatin gene (MSTN), a negative regulator of skeletal muscle development, was knocked out by CRISPR/Cas9 technology. Eight MSTN gene-edited bull calves (MT) were born, and six of them are well-developed. Compared with the control cattle (WT), the growth trait indexes of MT cattle were generally increased, and the hindquarters especially were significantly improved. The biochemical indexes and the semen characteristics demonstrated that MT bulls were healthy and fertile. Consistent with our conjecture, the wobble and beating of MT bull spermatozoa were significantly higher than that of WT. Nine sperm motility-related proteins and nineteen mitochondrial-related proteins were identified by up-regulation in MT bull spermatozoa using FLQ proteomic technique and act to govern sperm flagellum assembly, organization, and beating and provide sufficient energy for sperm motility. The current study confirmed that the MSTN gene-edited Chinese Yellow cattle have improved growth traits and normal fertility, which can be used for beef cattle production and breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China; (Y.Z.); (L.Y.); (G.S.); (Z.W.); (X.L.); (L.S.); (C.H.); (D.W.); (Z.H.); (Y.W.); (L.Z.)
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China; (Y.Z.); (L.Y.); (G.S.); (Z.W.); (X.L.); (L.S.); (C.H.); (D.W.); (Z.H.); (Y.W.); (L.Z.)
| |
Collapse
|