1
|
Perri A, Rago V, Maya-Núñez G. Editorial: New insights into prostate cancer: new biomarkers, molecular mechanisms, and therapeutic approaches. Front Endocrinol (Lausanne) 2024; 15:1453065. [PMID: 39114292 PMCID: PMC11303285 DOI: 10.3389/fendo.2024.1453065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Affiliation(s)
- Anna Perri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Guadalupe Maya-Núñez
- Unidad de Investigación Médica en Medicina Reproductiva, Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
2
|
Liu Z, Li S, Chen S, Sheng J, Li Z, Lv T, Yu W, Fan Y, Wang J, Liu W, Hu S, Jin J. YAP-mediated GPER signaling impedes proliferation and survival of prostate epithelium in benign prostatic hyperplasia. iScience 2024; 27:109125. [PMID: 38420594 PMCID: PMC10901089 DOI: 10.1016/j.isci.2024.109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) occurs when there is an imbalance between the proliferation and death of prostate cells, which is regulated tightly by estrogen signaling. However, the role of G protein-coupled estrogen receptor (GPER) in prostate cell survival remains ambiguous. In this study, we observed that prostates with epithelial hyperplasia showed increased yes-associated protein 1 (YAP) expression and decreased levels of estrogen and GPER. Blocking YAP through genetic or drug interventions led to reduced proliferation and increased apoptosis in the prostate epithelial cells. Interestingly, GPER agonists produced similar effects. GPER activation enhanced the phosphorylation and degradation of YAP, which was crucial for suppressing cell proliferation and survival. The Gαs/cAMP/PKA/LATS pathway, downstream of GPER, transmitted signals that facilitated YAP inhibition. This study investigated the interaction between GPER and YAP in the prostate epithelial cells and its contribution to BPH development. It lays the groundwork for future research on developing BPH treatments.
Collapse
Affiliation(s)
- Zhifu Liu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Senmao Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Shengbin Chen
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jindong Sheng
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
- Department of Gynaecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zheng Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Tianjing Lv
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Yu Fan
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jinlong Wang
- Department of Urology, Tibet Autonomous Region People's Hospital, Lhasa 850000, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen 518036, China
- Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Shuai Hu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jie Jin
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| |
Collapse
|
3
|
Rico-Fuentes C, López-Pulido EI, Pérez-Guerrero EE, Godínez-Rubí M, Villegas-Pineda JC, Villanueva-Pérez MA, Sierra-Díaz E, Zepeda-Nuño JS, Pereira-Suárez AL, Ramírez-de-Arellano A. Positive correlation between the nuclear expression of GPER and pGLI3 in prostate cancer tissues from patients with different Gleason scores. Front Endocrinol (Lausanne) 2024; 15:1333284. [PMID: 38370352 PMCID: PMC10870147 DOI: 10.3389/fendo.2024.1333284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024] Open
Abstract
Prostate cancer (PCa) is the most prevalent cause of death in the male population worldwide. The G Protein-Coupled Estrogen Receptor (GPER) has been gaining relevance in the development of PCa. Hedgehog (Hh) pathway activation is associated with aggressiveness, metastasis, and relapse in PCa patients. To date, no studies have evaluated the crosstalk between the GPER and the Hh pathway along different group grades in PCa. We conducted an analysis of paraffin-embedded tissues derived from patients with different prognostic grade of PCa using immunohistochemistry. Expression and correlation between GPER and glioma associated oncogene homologue (GLI) transcriptional factors in the parenchyma and stroma of PCa tumors were evaluated. Our results indicate that GPER is highly expressed in the nucleus and increases with higher grade groups. Additionally, GPER's expression correlates with pGLI3 nuclear expression across different grade groups in PCa tissues; however, whether the receptor induces the activation of GLI transcriptional factors, or the latter modulate the expression of GPER is yet to be discovered, as well as the functional consequence of this correlation.
Collapse
Affiliation(s)
- Cecilia Rico-Fuentes
- Doctorado en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Edgar Iván López-Pulido
- Doctorado en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico
| | - Edsaúl Emilio Pérez-Guerrero
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Marisol Godínez-Rubí
- Laboratorio de Patología Diagnóstica e Inmunohistoquimica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patologia, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Departamento de Morfología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Julio César Villegas-Pineda
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | - Erick Sierra-Díaz
- Departamento de Salud Pública, Centro Universitario de Ciencias de la Salud, División de Epidemiología, Unidad Médica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional de Occidente, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - José Sergio Zepeda-Nuño
- Laboratorio de Patología Diagnóstica e Inmunohistoquimica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patologia, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Laboratorio de Patología Diagnóstica e Inmunohistoquimica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patologia, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
4
|
Berger T, Guerrero V, Boeldt R, Legacki E, Roberts M, Conley AJ. Development of Porcine Accessory Sex Glands. Animals (Basel) 2024; 14:462. [PMID: 38338105 PMCID: PMC10854558 DOI: 10.3390/ani14030462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Accessory sex glands are recognized as targets of human disease and may have roles in reproductive success in livestock. The current experiments evaluated the influences of endogenous steroids on the development of porcine accessory sex glands, primarily in the neonatal period. When the aromatase inhibitor, letrozole, was used to inhibit the production of endogenous estrogens in the postnatal interval, growth of the seminal vesicles, prostate, and bulbourethral glands was stimulated. The weights of seminal vesicles, prostate, and bulbourethral glands approximately doubled at 6.5 weeks of age when the reduction in endogenous estrogens began at 1 week of age (p < 0.01). However, by 20 and 40 weeks of age, the weights of accessory sex glands were similar between the letrozole-treated boars and the vehicle-treated littermates indicating the growth stimulation was a transient effect when the treatment interval was short. The presence of both classical nuclear estrogen receptors and the G protein-coupled estrogen receptor in neonatal accessory sex glands indicated multiple signaling pathways might mediate the growth inhibition by endogenous estrogens. The absence of a detectable response when the classical estrogen receptors were blocked with fulvestrant (or when the androgen receptor was blocked with flutamide) suggests that endogenous estrogens act through the G protein-coupled estrogen receptor to inhibit the development of accessory sex glands during this neonatal to early juvenile interval.
Collapse
Affiliation(s)
- Trish Berger
- Department of Animal Science, University of California, Davis, CA 95616, USA; (V.G.); (E.L.); (M.R.)
| | - Valerie Guerrero
- Department of Animal Science, University of California, Davis, CA 95616, USA; (V.G.); (E.L.); (M.R.)
| | - Rosalina Boeldt
- Department of Animal Science, University of California, Davis, CA 95616, USA; (V.G.); (E.L.); (M.R.)
| | - Erin Legacki
- Department of Animal Science, University of California, Davis, CA 95616, USA; (V.G.); (E.L.); (M.R.)
| | - Megan Roberts
- Department of Animal Science, University of California, Davis, CA 95616, USA; (V.G.); (E.L.); (M.R.)
| | - Alan J. Conley
- Department of Population Health and Reproduction, University of California, Davis, CA 95616, USA;
| |
Collapse
|
5
|
Xu F, Ma J, Wang X, Wang X, Fang W, Sun J, Li Z, Liu J. The Role of G Protein-Coupled Estrogen Receptor (GPER) in Vascular Pathology and Physiology. Biomolecules 2023; 13:1410. [PMID: 37759810 PMCID: PMC10526873 DOI: 10.3390/biom13091410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Estrogen is indispensable in health and disease and mainly functions through its receptors. The protection of the cardiovascular system by estrogen and its receptors has been recognized for decades. Numerous studies with a focus on estrogen and its receptor system have been conducted to elucidate the underlying mechanism. Although nuclear estrogen receptors, including estrogen receptor-α and estrogen receptor-β, have been shown to be classical receptors that mediate genomic effects, studies now show that GPER mainly mediates rapid signaling events as well as transcriptional regulation via binding to estrogen as a membrane receptor. With the discovery of selective synthetic ligands for GPER and the utilization of GPER knockout mice, significant progress has been made in understanding the function of GPER. In this review, the tissue and cellular localizations, endogenous and exogenous ligands, and signaling pathways of GPER are systematically summarized in diverse physiological and diseased conditions. This article further emphasizes the role of GPER in vascular pathology and physiology, focusing on the latest research progress and evidence of GPER as a promising therapeutic target in hypertension, pulmonary hypertension, and atherosclerosis. Thus, selective regulation of GPER by its agonists and antagonists have the potential to be used in clinical practice for treating such diseases.
Collapse
Affiliation(s)
- Fujie Xu
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Weiyi Fang
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jingwei Sun
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| |
Collapse
|
6
|
Liao W, Sui X, Hou G, Yang M, Lin Y, Lu J, Yang Q. Trends in estrogen and progesterone receptors in prostate cancer: a bibliometric analysis. Front Oncol 2023; 13:1111296. [PMID: 37361598 PMCID: PMC10288854 DOI: 10.3389/fonc.2023.1111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction The bibliometric analysis aims to identify research trends in estrogen receptor (ERs) and progesterone receptor (PRs) in prostate cancer (PCa), and also discuss the hotspots and directions of this field. Methods 835 publications were sourced from the Web of Science database (WOS) from 2003 to 2022. Citespace, VOSviewer, and Bibliometrix were used for the bibliometric analysis. Results The number of published publications increased in early years, but declined in the last 5 years. The United States was the leading country in citations, publications, and top institutions. Prostate and Karolinska Institutet were the most publications of journal and institution, respectively. Jan-Ake Gustafsson was the most influential author based on the number of citations/publications. The most cited paper was "Estrogen receptors and human disease" by Deroo BJ, published in the Journal of Clinical Investigation. The most frequently used keywords were PCa (n = 499), gene-expression (n = 291), androgen receptor (AR) (n = 263), and ER (n = 341), while ERb (n = 219) and ERa (n = 215) further emphasized the importance of ER. Conclusions This study provides useful guidance that ERa antagonists, ERb agonists, and the combination of estrogen with androgen deprivation therapy (ADT) will potentially serve as a new treatment strategy for PCa. Another interesting topic is relationships between PCa and the function and mechanism of action of PRs subtypes. The outcome will assist scholars in gaining a comprehensive understanding of the current status and trends in the field, and provide inspiration for future research.
Collapse
Affiliation(s)
- Wenqiang Liao
- Department of Urology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xuxia Sui
- Laboratory of Pathogenic Biology, Shantou University Medical College, Shantou, China
| | - Gaoming Hou
- Department of Urology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Mei Yang
- Department of Urology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yuxue Lin
- Department of Urology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Junjie Lu
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Qingtao Yang
- Department of Urology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
7
|
Yang Y, Sheng J, Hu S, Cui Y, Xiao J, Yu W, Peng J, Han W, He Q, Fan Y, Niu Y, Lin J, Tian Y, Chang C, Yeh S, Jin J. Estrogen and G protein-coupled estrogen receptor accelerate the progression of benign prostatic hyperplasia by inducing prostatic fibrosis. Cell Death Dis 2022; 13:533. [PMID: 35672281 PMCID: PMC9174491 DOI: 10.1038/s41419-022-04979-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 01/21/2023]
Abstract
Benign prostatic hyperplasia (BPH) is the most common and progressive urological disease in elderly men worldwide. Epidemiological studies have suggested that the speed of disease progression varies among individuals, while the pathophysiological mechanisms of accelerated clinical progression in some BPH patients remain to be elucidated. In this study, we defined patients with BPH as belonging to the accelerated progressive group (transurethral resection of the prostate [TURP] surgery at ≤50 years old), normal-speed progressive group (TURP surgery at ≥70 years old), or non-progressive group (age ≤50 years old without BPH-related surgery). We enrolled prostate specimens from the three groups of patients and compared these tissues to determine the histopathological characteristics and molecular mechanisms underlying BPH patients with accelerated progression. We found that the main histopathological characteristics of accelerated progressive BPH tissues were increased stromal components and prostatic fibrosis, which were accompanied by higher myofibroblast accumulation and collagen deposition. Mechanism dissection demonstrated that these accelerated progressive BPH tissues have higher expression of the CYP19 and G protein-coupled estrogen receptor (GPER) with higher estrogen biosynthesis. Estrogen functions via GPER/Gαi signaling to modulate the EGFR/ERK and HIF-1α/TGF-β1 signaling to increase prostatic stromal cell proliferation and prostatic stromal fibrosis. The increased stromal components and prostatic fibrosis may accelerate the clinical progression of BPH. Targeting this newly identified CYP19/estrogen/GPER/Gαi signaling axis may facilitate the development of novel personalized therapeutics to better suppress the progression of BPH.
Collapse
Affiliation(s)
- Yang Yang
- grid.24696.3f0000 0004 0369 153XDepartment of Urology, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Jindong Sheng
- grid.411918.40000 0004 1798 6427Department of Gynaecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Shuai Hu
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| | - Yun Cui
- grid.24696.3f0000 0004 0369 153XDepartment of Urology, Beijing Chaoyang Hospital, Capital Medical University, 100020 Beijing, China
| | - Jing Xiao
- grid.24696.3f0000 0004 0369 153XDepartment of Urology, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Wei Yu
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| | - Jing Peng
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| | - Wenke Han
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| | - Qun He
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| | - Yu Fan
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| | - Yuanjie Niu
- grid.265021.20000 0000 9792 1228Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, 300211 Tianjin, China
| | - Jun Lin
- grid.24696.3f0000 0004 0369 153XDepartment of Urology, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Ye Tian
- grid.24696.3f0000 0004 0369 153XDepartment of Urology, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Chawnshang Chang
- grid.265021.20000 0000 9792 1228Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, 300211 Tianjin, China ,grid.412750.50000 0004 1936 9166George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY USA
| | - Shuyuan Yeh
- grid.412750.50000 0004 1936 9166George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY USA
| | - Jie Jin
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| |
Collapse
|
8
|
Marcoccia D, Smeriglio A, Mantovani A, Trombetta D, Lorenzetti S. Intracellular distribution of vinclozolin and its metabolites differently affects 5α-dihydrotestosterone (DHT)-induced PSA secretion in LNCaP cells. Reprod Toxicol 2022; 111:83-91. [PMID: 35595151 DOI: 10.1016/j.reprotox.2022.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Endocrine disruption mechanisms in prostate are an overlooked issue. The anti-androgenic properties of the fungicide vinclozolin (VIN) and its active metabolites - 2-[[(3,5- dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid (M1) and 3'5'-dichloro-2-hydroxy-2- methylbut-3-enanilide (M2) - were assessed on human prostate-derived cells (LNCaP); the effects were investigated also upon co-treatment with 5α-dihydrotestosterone (DHT), the physiological androgen receptor (AR)-agonist, and compared to the anti-androgenic drugs, 2-hydroxy-flutamide (2OH-FTA) and bicalutamide (BIC). Assessed endpoints were the cellular uptake and subcellular localization of VIN, M1 and M2, DHT-induced PSA gene expression and secretion. VIN, its metabolites, and the reference drugs, significantly reduced DHT-induced PSA secretion and gene expression, M2 showing the strongest downregulation. In absence of DHT, 2OH-FTA and BIC showed a very high (>98%) LNCaP uptake with a predominant intranuclear localization (BIC=80%, 2OH-FTA=70%). VIN cellular uptake was 42%: 24.7% made up by M2, mostly localized at nuclear level, differently from VIN and M1. Upon DHT co-treatment, VIN intracellular uptake increased by 28%, especially in the microsomal fraction (MF); M2 also increased mainly in MF but also, to a lower extent, in the intranuclear fraction. Finally, in a 72-hr time-course, the LNCaP uptake of VIN and its metabolites was much faster compared to purified M1 and M2. Overall, M2 resulted the leading compound for VIN endocrine-disrupting effects in LNCaP.
Collapse
Affiliation(s)
- Daniele Marcoccia
- Dpt. of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità - ISS, viale Regina Elena 299, 00161Rome, Italy.
| | - Antonella Smeriglio
- Dpt. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Alberto Mantovani
- Dpt. of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità - ISS, viale Regina Elena 299, 00161Rome, Italy.
| | - Domenico Trombetta
- Dpt. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Stefano Lorenzetti
- Dpt. of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità - ISS, viale Regina Elena 299, 00161Rome, Italy.
| |
Collapse
|
9
|
Bubb M, Beyer ASL, Dasgupta P, Kaemmerer D, Sänger J, Evert K, Wirtz RM, Schulz S, Lupp A. Assessment of G Protein-Coupled Oestrogen Receptor Expression in Normal and Neoplastic Human Tissues Using a Novel Rabbit Monoclonal Antibody. Int J Mol Sci 2022; 23:ijms23095191. [PMID: 35563581 PMCID: PMC9099907 DOI: 10.3390/ijms23095191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
In addition to the classical oestrogen receptors, ERα and ERβ, a G protein-coupled oestrogen receptor (GPER) has been identified that primarily mediates the rapid, non-genomic signalling of oestrogens. Data on GPER expression at the protein level are contradictory; therefore, the present study was conducted to re-evaluate GPER expression by immunohistochemistry to obtain broad GPER expression profiles in human non-neoplastic and neoplastic tissues, especially those not investigated in this respect so far. We developed and thoroughly characterised a novel rabbit monoclonal anti-human GPER antibody, 20H15L21, using Western blot analyses and immunocytochemistry. The antibody was then applied to a large series of formalin-fixed, paraffin-embedded human tissue samples. In normal tissue, GPER was identified in distinct cell populations of the cortex and the anterior pituitary; islets and pancreatic ducts; fundic glands of the stomach; the epithelium of the duodenum and gallbladder; hepatocytes; proximal tubules of the kidney; the adrenal medulla; and syncytiotrophoblasts and decidua cells of the placenta. GPER was also expressed in hepatocellular, pancreatic, renal, and endometrial cancers, pancreatic neuroendocrine tumours, and pheochromocytomas. The novel antibody 20H15L21 will serve as a valuable tool for basic research and the identification of GPER-expressing tumours during histopathological examinations.
Collapse
Affiliation(s)
- Maria Bubb
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
| | - Anna-Sophia Lieselott Beyer
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
| | - Pooja Dasgupta
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
| | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, 99438 Bad Berka, Germany;
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, 99438 Bad Berka, Germany;
| | - Katja Evert
- Department of Pathology, University of Regensburg, 93053 Regensburg, Germany;
- Institute of Pathology, University Medicine of Greifswald, 17475 Greifswald, Germany
| | - Ralph M. Wirtz
- STRATIFYER Molecular Pathology GmbH, 50935 Cologne, Germany;
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
- Correspondence: ; Tel.: +49-3641-9325678; Fax: +49-3641-9325652
| |
Collapse
|
10
|
D’Arrigo G, Gianquinto E, Rossetti G, Cruciani G, Lorenzetti S, Spyrakis F. Binding of Androgen- and Estrogen-Like Flavonoids to Their Cognate (Non)Nuclear Receptors: A Comparison by Computational Prediction. Molecules 2021; 26:1613. [PMID: 33799482 PMCID: PMC8001607 DOI: 10.3390/molecules26061613] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Flavonoids are plant bioactives that are recognized as hormone-like polyphenols because of their similarity to the endogenous sex steroids 17β-estradiol and testosterone, and to their estrogen- and androgen-like activity. Most efforts to verify flavonoid binding to nuclear receptors (NRs) and explain their action have been focused on ERα, while less attention has been paid to other nuclear and non-nuclear membrane androgen and estrogen receptors. Here, we investigate six flavonoids (apigenin, genistein, luteolin, naringenin, quercetin, and resveratrol) that are widely present in fruits and vegetables, and often used as replacement therapy in menopause. We performed comparative computational docking simulations to predict their capability of binding nuclear receptors ERα, ERβ, ERRβ, ERRγ, androgen receptor (AR), and its variant ART877A and membrane receptors for androgens, i.e., ZIP9, GPRC6A, OXER1, TRPM8, and estrogens, i.e., G Protein-Coupled Estrogen Receptor (GPER). In agreement with data reported in literature, our results suggest that these flavonoids show a relevant degree of complementarity with both estrogen and androgen NR binding sites, likely triggering genomic-mediated effects. It is noteworthy that reliable protein-ligand complexes and estimated interaction energies were also obtained for some suggested estrogen and androgen membrane receptors, indicating that flavonoids could also exert non-genomic actions. Further investigations are needed to clarify flavonoid multiple genomic and non-genomic effects. Caution in their administration could be necessary, until the safe assumption of these natural molecules that are largely present in food is assured.
Collapse
Affiliation(s)
- Giulia D’Arrigo
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy; (G.D.); (E.G.)
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy; (G.D.); (E.G.)
| | - Giulia Rossetti
- Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5) “Computational Biomedicine”, Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Neurology, RWTH, Aachen University, 52074 Aachen, Germany;
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy;
| | - Stefano Lorenzetti
- Istituto Superiore di Sanità (ISS), Department of Food Safety, Nutrition and Veterinary Public Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy; (G.D.); (E.G.)
| |
Collapse
|
11
|
Ramírez-de-Arellano A, Pereira-Suárez AL, Rico-Fuentes C, López-Pulido EI, Villegas-Pineda JC, Sierra-Diaz E. Distribution and Effects of Estrogen Receptors in Prostate Cancer: Associated Molecular Mechanisms. Front Endocrinol (Lausanne) 2021; 12:811578. [PMID: 35087479 PMCID: PMC8786725 DOI: 10.3389/fendo.2021.811578] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
Estrogens are hormones that have been extensively presented in many types of cancer such as breast, uterus, colorectal, prostate, and others, due to dynamically integrated signaling cascades that coordinate cellular growth, differentiation, and death which can be potentially new therapeutic targets. Despite the historical use of estrogens in the pathogenesis of prostate cancer (PCa), their biological effect is not well known, nor their role in carcinogenesis or the mechanisms used to carry their therapeutic effects of neoplastic in prostate transformation. The expression and regulation of the estrogen receptors (ERs) ERα, ERβ, and GPER stimulated by agonists and antagonists, and related to prostate cancer cells are herein reviewed. Subsequently, the structures of the ERs and their splice variants, the binding of ligands to ERs, and the effect on PCa are provided. Finally, we also assessed the contribution of molecular simulation which can help us to search and predict potential estrogenic activities.
Collapse
Affiliation(s)
- Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Cecilia Rico-Fuentes
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Edgar Iván López-Pulido
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Julio César Villegas-Pineda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Erick Sierra-Diaz
- Departamentos de Clínicas Quirúrgicas y Salud Pública, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Urología, Hospital de Especialidades Centro Médico Nacional de Occidente, Guadalajara, Mexico
- *Correspondence: Erick Sierra-Diaz,
| |
Collapse
|
12
|
Panza S, Giordano F, De Rose D, Panno ML, De Amicis F, Santoro M, Malivindi R, Rago V, Aquila S. FSH-R Human Early Male Genital Tract, Testicular Tumors and Sperm: Its Involvement in Testicular Disorders. Life (Basel) 2020; 10:life10120336. [PMID: 33317204 PMCID: PMC7764367 DOI: 10.3390/life10120336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/26/2022] Open
Abstract
The follicle-stimulating hormone receptor (FSH-R) expression was always considered human gonad-specific. The receptor has also been newly detected in extragonadal tissues. In this finding, we evaluated FSH-R expression in the human male early genital tract, in testicular tumors, and in sperm from healthy and varicocele patients. In sperm, we also studied the mechanism of FSH-R action. Immunohystochemistry and Western blot analysis showed FSH-R presence in the first pathways of the human genital tract, in embryonal carcinoma, and in sperm, but it was absent in seminoma and in lower varicocele. In sperm, FSH/FSH-R activity is mediated by G proteins activating the PKA pathway, as we observed by using the H89. It emerged that increasing FSH treatments induced motility, survival, capacitation, and acrosome reaction in both sperm samples. The different FSH-R expression in tumor testicular tissues may be discriminate by tumor histological type. In spermatozoa, FSH-R indicates a direct action of FSH in these cells, which could be beneficial during semen preparation for in vitro fertilization procedures. For instance, FSH positive effects could be relevant in idiopathic infertility and in the clinic surgery of varicocele. In conclusion, FSH-R expression may be considered a molecular marker of testicular disorders.
Collapse
Affiliation(s)
- Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria—Arcavacata di Rende, 87036 Cosenza, Italy; (S.P.); (F.G.); (D.D.R.); (M.L.P.); (F.D.A.); (M.S.); (R.M.); (S.A.)
- Centro Sanitario, University of Calabria—Arcavacata di Rende, 87036 Cosenza, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria—Arcavacata di Rende, 87036 Cosenza, Italy; (S.P.); (F.G.); (D.D.R.); (M.L.P.); (F.D.A.); (M.S.); (R.M.); (S.A.)
| | - Daniela De Rose
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria—Arcavacata di Rende, 87036 Cosenza, Italy; (S.P.); (F.G.); (D.D.R.); (M.L.P.); (F.D.A.); (M.S.); (R.M.); (S.A.)
- Centro Sanitario, University of Calabria—Arcavacata di Rende, 87036 Cosenza, Italy
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria—Arcavacata di Rende, 87036 Cosenza, Italy; (S.P.); (F.G.); (D.D.R.); (M.L.P.); (F.D.A.); (M.S.); (R.M.); (S.A.)
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria—Arcavacata di Rende, 87036 Cosenza, Italy; (S.P.); (F.G.); (D.D.R.); (M.L.P.); (F.D.A.); (M.S.); (R.M.); (S.A.)
- Centro Sanitario, University of Calabria—Arcavacata di Rende, 87036 Cosenza, Italy
| | - Marta Santoro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria—Arcavacata di Rende, 87036 Cosenza, Italy; (S.P.); (F.G.); (D.D.R.); (M.L.P.); (F.D.A.); (M.S.); (R.M.); (S.A.)
- Centro Sanitario, University of Calabria—Arcavacata di Rende, 87036 Cosenza, Italy
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria—Arcavacata di Rende, 87036 Cosenza, Italy; (S.P.); (F.G.); (D.D.R.); (M.L.P.); (F.D.A.); (M.S.); (R.M.); (S.A.)
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria—Arcavacata di Rende, 87036 Cosenza, Italy; (S.P.); (F.G.); (D.D.R.); (M.L.P.); (F.D.A.); (M.S.); (R.M.); (S.A.)
- Correspondence: ; Tel.: +39-09-8449-6210; Fax: +39-09-8449-3271
| | - Saveria Aquila
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria—Arcavacata di Rende, 87036 Cosenza, Italy; (S.P.); (F.G.); (D.D.R.); (M.L.P.); (F.D.A.); (M.S.); (R.M.); (S.A.)
- Centro Sanitario, University of Calabria—Arcavacata di Rende, 87036 Cosenza, Italy
| |
Collapse
|
13
|
Zhang D, Wang Y, Lin H, Sun Y, Wang M, Jia Y, Yu X, Jiang H, Xu W, Sun JP, Xu Z. Function and therapeutic potential of G protein-coupled receptors in epididymis. Br J Pharmacol 2020; 177:5489-5508. [PMID: 32901914 DOI: 10.1111/bph.15252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/08/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
Infertility rates for both females and males have increased continuously in recent years. Currently, effective treatments for male infertility with defined mechanisms or targets are still lacking. G protein-coupled receptors (GPCRs) are the largest class of drug targets, but their functions and the implications for the therapeutic development for male infertility largely remain elusive. Nevertheless, recent studies have shown that several members of the GPCR superfamily play crucial roles in the maintenance of ion-water homeostasis of the epididymis, development of the efferent ductules, formation of the blood-epididymal barrier and maturation of sperm. Knowledge of the functions, genetic variations and working mechanisms of such GPCRs, along with the drugs and ligands relevant to their specific functions, provide future directions and a great arsenal for new developments in the treatment of male infertility.
Collapse
Affiliation(s)
- Daolai Zhang
- Department of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hui Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Yujing Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Mingwei Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Yingli Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Xiao Yu
- Department of Physiology, School of Medicine, Shandong University, Jinan, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Beijing, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing, China
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University West China Second University Hospital, Chengdu, China
| | - Jin-Peng Sun
- Department of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|
14
|
Cheboub A, Regouat N, Djidjik R, Slimani A, Hadj-Bekkouche F. Short-term aromatase inhibition induces prostatic alterations in adult wistar rat: A biochemical, histopathological and immunohistochemical study. Acta Histochem 2019; 121:151441. [PMID: 31522738 DOI: 10.1016/j.acthis.2019.151441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 08/08/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE This study aimed to evaluate the effects of estrogen reduction on amyloid deposition, some lipid metabolism and oxidative stress markers, PSA-like production and p63 expression in the prostate of the adult rat. METHODS Aromatase inhibitor: Formestane (4-OHA), was administrated to male rats, at a dose of 0.1 mg/kg b.w./day, for 10 days. The control group (CONT) received the same volume of placebo injection (NaCl 0.9%). RESULTS 4-OHA treatment induced a significant accumulation of intraprostatic cholesterol (138.90 ± 17.64 vs 85.12 ± 2.87, p = 0.01); against an insignificant diminution of malondialdehyde (412.6 ± 54.35 vs 842.70 ± 336.50, p > 0.05) and glutathione (2.40 ± 0.23 vs 3.65 ± 0.88, p > 0.05). This was associated with a significant decrease of nitric oxide (31.76 ± 7.07 vs 179.40 ± 58.35, p = 0.024). Additionally, 4-OHA significantly increased the intraprostatic production of PSA-like (11.12 ± 2.78 vs 3.91 ± 0.43, p = 0.043). The prostatic histology revealed an amyloid deposition, in all prostatic lobes and a smooth muscle layer growth (p < 0.05); especially significant in the dorsal and lateral lobes. Theses lobes manifested a basal cells proliferation, with a 3-fold increase of p63 expression (p < 0.001). The ventral lobe presented epithelial atrophy (37.80 ± 16.20 vs 167.60 ± 5.16, p < 0.05); with occasional and significant proliferative foci (247.00 ± 9.573 vs 167.60 ± 5.16 p < 0.05). DISCUSSION AND CONCLUSION Aromatase inhibition, in the adult male rat, alters the prostatic function by reducing nitric oxide availability and inducing amyloid deposition along with limiting the differentiation of basal cells, through a lobe-specific p63-overexpression.
Collapse
Affiliation(s)
- Amina Cheboub
- Faculty of Biology Sciences, University of Sciences and Technology Houari Boumediene, Algeria.
| | - Nadia Regouat
- Faculty of Biology Sciences, University of Sciences and Technology Houari Boumediene, Algeria
| | - Reda Djidjik
- Immunology Service of Isaad Hassani-Beni Messous Hospital, Algiers, Algeria
| | - Assia Slimani
- Pathological Anatomy Service of Isaad Hassani-Beni Messous Hospital, Algiers, Algeria
| | - Fatima Hadj-Bekkouche
- Faculty of Biology Sciences, University of Sciences and Technology Houari Boumediene, Algeria
| |
Collapse
|
15
|
Xu S, Yu S, Dong D, Lee LTO. G Protein-Coupled Estrogen Receptor: A Potential Therapeutic Target in Cancer. Front Endocrinol (Lausanne) 2019; 10:725. [PMID: 31708873 PMCID: PMC6823181 DOI: 10.3389/fendo.2019.00725] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
The G protein-coupled estrogen receptor (GPER) is a seven-transmembrane-domain receptor that mediates non-genomic estrogen related signaling. After ligand activation, GPER triggers multiple downstream pathways that exert diverse biological effects on the regulation of cell growth, migration and programmed cell death in a variety of tissues. A significant correlation between GPER and the progression of multiple cancers has likewise been reported. Therefore, a better understanding of the role GPER plays in cancer biology may lead to the identification of novel therapeutic targets, especially among estrogen-related cancers. Here, we review cell signaling and detail the functions of GPER in malignancies.
Collapse
Affiliation(s)
- Shen Xu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Faculty of Health Sciences, Centre of Reproduction Development and Aging, University of Macau, Macau, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China
| | - Daming Dong
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Daming Dong
| | - Leo Tsz On Lee
- Faculty of Health Sciences, Centre of Reproduction Development and Aging, University of Macau, Macau, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China
- Leo Tsz On Lee
| |
Collapse
|
16
|
Estrogens and prostate cancer. Prostate Cancer Prostatic Dis 2018; 22:185-194. [PMID: 30131606 DOI: 10.1038/s41391-018-0081-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/30/2018] [Accepted: 07/13/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Hormonal influences such as androgens and estrogens are known contributors in the development and progression of prostate cancer (CaP). While much of the research to the hormonal nature of CaP has focused on androgens, estrogens also have critical roles in CaP development, physiology as well as a potential therapeutic intervention. METHODS In this review, we provide a critical literature review of the current basic science and clinical evidence for the interaction between estrogens and CaP. RESULTS Estrogenic influences in CaP include synthetic, endogenous, fungi and plant-derived compounds, and represent a family of sex hormones, which cross hydrophobic cell membranes and bind to membrane-associated receptors and estrogen receptors that localize to the nucleus triggering changes in gene expression in various organ systems. CONCLUSIONS Estrogens represent a under-recognized contributor in CaP development and progression. Further research in this topic may provide opportunities for identification of environmental influencers as well as providing novel therapeutic targets in the treatment of CaP.
Collapse
|
17
|
Malivindi R, Aquila S, Rago V. Immunolocalization of G Protein-Coupled Estrogen Receptor in the Pig Epididymis. Anat Rec (Hoboken) 2018; 301:1467-1473. [PMID: 29679442 DOI: 10.1002/ar.23837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/12/2018] [Accepted: 02/08/2018] [Indexed: 01/01/2023]
Abstract
The presence of estrogen in the genital ducts of different mammalian species has been extensively studied and the estrogen influence on the functional activity of the male genital tract has been hypothesized. Conversely, very few data have been reported on pig excurrent ducts: the localization of classical estrogen receptors (ERα and ERβ) is scarcely known, while the expression of the G protein-coupled receptor (GPER1), a membrane estrogen receptor, is still unknown in pig. The aim of the present study was to evaluate GPER1 expression in the different regions of the mature pig epididymis, using immunohistochemistry, western blot and RT-PCR analyses. The results showed that GPER1 is mainly expressed in the epithelial cells of the corpus epididymis compared to the caput and the cauda, while muscle cells are moderately immunostained and stromal cells are unstained. The presence of GPER1 was confirmed by Western blot and RT-PCR analyses. In our study, we have demonstrated for the first time the GPER1 expression in male porcine epididymis, revealing a new mediator of estrogen signaling at this site. In conclusion, these new data suggest that estrogen action via GPER1 may contribute to sperm maturation in the corpus and sperm protection/storage in the cauda. Interestingly, the presence of GPER1 in the muscle layer may be indicative of a possible GPER1 involvement in the estrogen regulation of duct contractility. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Saveria Aquila
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy.,Centro Sanitario, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
18
|
Rago V, Romeo F, Giordano F, Malivindi R, Pezzi V, Casaburi I, Carpino A. Expression of oestrogen receptors (GPER, ESR1, ESR2) in human ductuli efferentes and proximal epididymis. Andrology 2017; 6:192-198. [PMID: 29145706 DOI: 10.1111/andr.12443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022]
Abstract
Oestrogen targeting in the human genital ducts is still not well-known. In fact, to date, the localization of oestrogen receptors, ESR1 and ESR2, is controversial and the presence of the membrane oestrogen receptor GPER (G protein-coupled oestrogen receptor) is unexplored. This study has investigated the expression of GPER, ESR1, ESR2 in human ductuli efferentes and proximal caput epididymis by immunohistochemistry and Western blot analysis. Furthermore, the presence of PELP1 (proline-glutamic acid-leucine-rich protein 1), a co-regulator of the oestrogen receptors, was also evaluated. In ductuli efferentes, GPER and ESR1 were clearly localized in all epithelial cells, while ESR2 was evidenced only in ciliated cells. Conversely, the epithelial cells of proximal caput epididymis revealed moderate GPER immunoreactivity, the absence of ERS1 and the occasional presence of ESR2. Furthermore, PELP1 was observed in ciliated cells of ductuli efferentes and in principal cells of proximal caput epididymis. Therefore, this study firstly demonstrated the expression of GPER in human male genital ducts, revealing a new mediator of oestrogen action in these anatomical sites. ESR1 and ESR2 were differentially localized in the two genital tracts together with PELP1, but cell sites of ERs and their co-regulator were not homogeneous. So, a different regional/cellular association of GPER with the classical oestrogen receptors was highlighted, suggesting that oestrogen action could be mediated by GPER, ESR1, ESR2 in ductuli efferentes, while by GPER and, occasionally by ESR2, in proximal caput epididymis. This study suggests that the specific oestrogen-mediated functions in human genital ducts might result from the different local interactions of oestrogens with oestrogen receptors and their co-regulators.
Collapse
Affiliation(s)
- V Rago
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - F Romeo
- Pathologic Anatomy Unit, Annunziata Hospital, Cosenza, Italy
| | - F Giordano
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - R Malivindi
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - V Pezzi
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - I Casaburi
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - A Carpino
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
19
|
Rahman HP, Hofland J, Foster PA. In touch with your feminine side: how oestrogen metabolism impacts prostate cancer. Endocr Relat Cancer 2016; 23:R249-66. [PMID: 27194038 DOI: 10.1530/erc-16-0118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 12/18/2022]
Abstract
Prostate cancer is the primary cancer in males, with increasing global incidence rates making this malignancy a significant healthcare burden. Androgens not only promote normal prostate maturity but also influence the development and progression of prostate cancer. Intriguingly, evidence now suggests endogenous and exogenous oestrogens, in the form of phytoestrogens, may be equally as relevant as androgens in prostate cancer growth. The prostate gland has the molecular mechanisms, catalysed by steroid sulphatase (STS), to unconjugate and utilise circulating oestrogens. Furthermore, prostate tissue also expresses enzymes essential for local oestrogen metabolism, including aromatase (CYP19A1) and 3β- and 17β-hydroxysteroid dehydrogenases. Increased expression of these enzymes in malignant prostate tissue compared with normal prostate indicates that oestrogen synthesis is favoured in malignancy and thus may influence tumour progression. In contrast to previous reviews, here we comprehensively explore the epidemiological and scientific evidence on how oestrogens impact prostate cancer, particularly focusing on pre-receptor oestrogen metabolism and subsequent molecular action. We analyse how molecular mechanisms and metabolic pathways involved in androgen and oestrogen synthesis intertwine to alter prostate tissue. Furthermore, we speculate on whether oestrogen receptor status in the prostate affects progression of this malignancy.
Collapse
Affiliation(s)
- Habibur P Rahman
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
| | - Johannes Hofland
- Department of Internal MedicineErasmus Medical Center, Rotterdam, The Netherlands
| | - Paul A Foster
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK Centre for EndocrinologyDiabetes and Metabolism, Birmingham Healthcare Partners, Birmingham, UK
| |
Collapse
|
20
|
Function of G-Protein-Coupled Estrogen Receptor-1 in Reproductive System Tumors. J Immunol Res 2016; 2016:7128702. [PMID: 27314054 PMCID: PMC4903118 DOI: 10.1155/2016/7128702] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/08/2016] [Accepted: 05/08/2016] [Indexed: 01/13/2023] Open
Abstract
The G-protein-coupled estrogen receptor-1 (GPER-1), also known as GPR30, is a novel estrogen receptor mediating estrogen receptor signaling in multiple cell types. The progress of estrogen-related cancer is promoted by GPER-1 activation through mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), and phospholipase C (PLC) signaling pathways. However, this promoting effect of GPER-1 is nonclassic estrogen receptor (ER) dependent manner. In addition, clinical evidences revealed that GPER-1 is associated with estrogen resistance in estrogen-related cancer patients. These give a hint that GPER-1 may be a novel therapeutic target for the estrogen-related cancers. However, preclinical studies also found that GPER-1 activation of its special agonist G-1 inhibits cancer cell proliferation. This review aims to summarize the characteristics and complex functions of GPER-1 in cancers.
Collapse
|