1
|
Schiavi-Ehrenhaus LJ, Romarowski A, Jabloñski M, Krapf D, Luque GM, Buffone MG. The early molecular events leading to COFILIN phosphorylation during mouse sperm capacitation are essential for acrosomal exocytosis. J Biol Chem 2022; 298:101988. [PMID: 35487245 PMCID: PMC9142561 DOI: 10.1016/j.jbc.2022.101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
The actin cytoskeleton reorganization during sperm capacitation is essential for the occurrence of acrosomal exocytosis (AR) in several mammalian species. Here, we demonstrate that in mouse sperm, within the first minutes of exposure upon capacitating conditions, the activity of RHOA/C and RAC1 is essential for LIMK1 and COFILIN phosphorylation. However, we observed that the signaling pathway involving RAC1 and PAK4 is the main player in controlling actin polymerization in the sperm head necessary for the occurrence of AR. Moreover, we show that the transient phosphorylation of COFILIN is also influenced by the Slingshot family of protein phosphatases (SSH1). The activity of SSH1 is regulated by the dual action of two pathways. On one hand, RHOA/C and RAC1 activity promotes SSH1 phosphorylation (inactivation). On the other hand, the activating dephosphorylation is driven by okadaic acid-sensitive phosphatases. This regulatory mechanism is independent of the commonly observed activating mechanisms involving PP2B and emerges as a new finely tuned modulation that is, so far, exclusively observed in mouse sperm. However, persistent phosphorylation of COFILIN by SSH1 inhibition or okadaic acid did not altered actin polymerization and the AR. Altogether, our results highlight the role of small GTPases in modulating actin dynamics required for AR.
Collapse
Affiliation(s)
- Liza J Schiavi-Ehrenhaus
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina
| | - Ana Romarowski
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina
| | - Darío Krapf
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina.
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Liu F, Liu X, Liu X, Li T, Zhu P, Liu Z, Xue H, Wang W, Yang X, Liu J, Han W. Integrated Analyses of Phenotype and Quantitative Proteome of CMTM4 Deficient Mice Reveal Its Association with Male Fertility. Mol Cell Proteomics 2019; 18:1070-1084. [PMID: 30867229 PMCID: PMC6553932 DOI: 10.1074/mcp.ra119.001416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
The chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTM) is a gene family that has been implicated in male reproduction. CMTM4 is an evolutionarily conserved member that is highly expressed in the testis. However, its function in male fertility remains unknown. Here, we demonstrate that CMTM4 is associated with spermatogenesis and sperm quality. Using Western blotting and immunohistochemical analyses, we found CMTM4 expression to be decreased in poor-quality human spermatozoa, old human testes, and testicular biopsies with nonobstructive azoospermia. Using CRISPR-Cas9 technology, we knocked out the Cmtm4 gene in mice. These Cmtm4 knockout (KO) mice showed reduced testicular daily sperm production, lower epididymal sperm motility and increased proportion of abnormally backward-curved sperm heads and bent sperm midpieces. These mice also had an evident sub-fertile phenotype, characterized by low pregnancy rates on prolonged breeding with wild type female mice, reduced in vitro fertilization efficiency and a reduced percentage of acrosome reactions. We then performed quantitative proteomic analysis of the testes, where we identified 139 proteins to be downregulated in Cmtm4-KO mice, 100 (71.9%) of which were related to sperm motility and acrosome reaction. The same proteomic analysis was performed on sperm, where we identified 3588 proteins with 409 being differentially regulated in Cmtm4-KO mice. Our enrichment analysis showed that upregulated proteins were enriched with nucleosomal DNA binding functions and the downregulated proteins were enriched with actin binding functions. These findings elucidate the roles of CMTM4 in male fertility and demonstrates its potential as a promising molecular candidate for sperm quality assessment and the diagnosis or treatment of male infertility.
Collapse
Affiliation(s)
- FuJun Liu
- From the ‡Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - XueXia Liu
- §Department of Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
- ¶Shandong Research Centre for Stem Cell Engineering, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
| | - Xin Liu
- §Department of Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
- ¶Shandong Research Centre for Stem Cell Engineering, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
| | - Ting Li
- From the ‡Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Peng Zhu
- §Department of Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
- ¶Shandong Research Centre for Stem Cell Engineering, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
| | - ZhengYang Liu
- From the ‡Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Hui Xue
- From the ‡Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - WenJuan Wang
- ‖Reproduction Medical Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, P.R. China
| | - XiuLan Yang
- From the ‡Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Juan Liu
- §Department of Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
- ¶Shandong Research Centre for Stem Cell Engineering, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
| | - WenLing Han
- From the ‡Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Center for Human Disease Genomics, Beijing, 100191, China;
| |
Collapse
|
3
|
Dietrich MA, Nynca J, Ciereszko A. Proteomic and metabolomic insights into the functions of the male reproductive system in fishes. Theriogenology 2019; 132:182-200. [PMID: 31029849 DOI: 10.1016/j.theriogenology.2019.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 02/08/2023]
Abstract
Proteomics and metabolomics are emerging and powerful tools to unravel the complex molecular mechanisms regulating reproduction in male fish. So far, numerous proteins and metabolites have been identified that provide us with valuable information to conduct a comprehensive analysis on seminal plasma and spermatozoa components and their functions. These analyses have allowed a better understanding of the blood-testis barrier functions, the molecular mechanisms underlying spermatogenesis, spermatozoa maturation, motility signaling, and competition as well as the mechanism of cryodamage to sperm structure and functions. To extend, proteins that undergo posttranslational modification, such as phosphorylation and oxidation in response to spermatozoa motility activation and cryopreservation, respectively, have been identified. Proteomic studies resulted in identification of potential proteins that can be used as biomarkers for sperm quality and freezability to enable the control of artificial reproduction, and to improve methods for long-term preservation (cryopreservation) of sperm. The different proteins expressed in the spermatozoa of neomales and normal males can also provide new insights into development of methods for separating X and Y fish sperm, and changes in the protein profiles in haploid and diploid spermatozoa will provide new perspectives to better understand the mechanism of male polyploidy. Overall, the knowledge gained by proteomic and metabolomic studies is important from basic to applied sciences for the development and/or optimisation of techniques in controlled fish reproduction.
Collapse
Affiliation(s)
- Mariola A Dietrich
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Joanna Nynca
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Andrzej Ciereszko
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|