1
|
Ahmet E, Ramazan A, Selin Y, İzem SA, Nur E, Kamber D, Mithat E, Kemal A. The Effect of Cholesterol-Loaded Cyclodextrin and Resveratrol Compounds on Post-Thawing Quality of Ram Semen. Vet Med Sci 2025; 11:e70172. [PMID: 39792068 PMCID: PMC11720717 DOI: 10.1002/vms3.70172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Ram sperm are more vulnerable to freezing than those of most other farm animals. During sperm freezing, the cell membrane loses some of its cholesterol, which regulates signalling mechanisms and prevents premature capacitation. Resveratrol (RES) increases the fluidity of the cell membrane, which becomes peroxidized during freezing and reduces free radicals. In this study, the effectiveness of RES, cholesterol-loaded cyclodextrin (CLC) and their combinations in ram sperm cryopreservation were investigated. The collected semen was divided into two equal volumes: One was diluted with tris-citric acid-glucose medium (TCG) containing CLC, whereas the other was diluted with a CLC-free TCG solution. After examining motility, both groups were further divided into two equal volumes, forming the following working groups: control (no RES, no CLC); RES (20 µg/mL); CLC (2 mg CLC/120 × 106 sperm); and RES + CLC (RES 20 µg/mL + 2 mg CLC/120 × 106 sperm). These groups were diluted with media containing their respective additives. Post-thawing, the samples were analysed for motility, acrosome and membrane integrity, membrane functionality, mitochondrial activity, capacitation status, oxidative stress and DNA integrity. CLC preserved sperm total motility, acrosome and plasma membrane integrity and decreased the rate of early capacitation (p < 0.05). RES had no significant effect on sperm quality before freezing and post-thawing (p > 0.05). However, RES + CLC increased mitochondrial activity post-thawing (p < 0.05). In conclusion, CLC minimized sperm membrane damage caused by cryopreservation in ram sperm. RES alone was ineffective, and the combination of RES and CLC did not yield a positive synergistic effect on ram spermatological parameters.
Collapse
Affiliation(s)
- Eser Ahmet
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary MedicineSiirt UniversitySiirtTurkey
| | - Arıcı Ramazan
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicineİstanbul University—CerrahpasaAvcilarİstanbulTurkey
| | - Yağcıoğlu Selin
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicineİstanbul University—CerrahpasaAvcilarİstanbulTurkey
| | - Sandal Asiye İzem
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicineİstanbul University—CerrahpasaAvcilarİstanbulTurkey
| | - Ersoy Nur
- Graduate Education InstituteIstanbul University—CerrahpasaAvcılarİstanbulTurkey
| | - Demir Kamber
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicineİstanbul University—CerrahpasaAvcilarİstanbulTurkey
| | - Evecen Mithat
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicineİstanbul University—CerrahpasaAvcilarİstanbulTurkey
| | - Ak Kemal
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicineİstanbul University—CerrahpasaAvcilarİstanbulTurkey
| |
Collapse
|
2
|
Eser A, Yağcıoğlu S, Arıcı R, Demir K, Ak K. Effects of Resveratrol-Loaded Cyclodextrin on the Quality Characteristics of Ram Spermatozoa Following Cryopreservation. Animals (Basel) 2024; 14:2745. [PMID: 39335333 PMCID: PMC11428706 DOI: 10.3390/ani14182745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the effects of pure and methyl-β-cyclodextrin loaded forms of resveratrol (10 µg/mL, 20 µg/mL, and 40 µg/mL) on ram sperm functions post-thawing. Semen samples were pooled and divided into ten groups: Control, RES10, RES20, RES40, CD10, CD20, CD40, RLC10, RLC20, and RLC40. The groups were pre-diluted with media containing the group-specific chemicals, followed by 15 min of incubation, dilution, and freezing. To assess the effects of the chemicals, a post-thaw sperm quality assessment was conducted. Motility and other velocity parameters were evaluated using computer-assisted semen analysis. The functional integrity of spermatozoa membranes was assessed with the hypo-osmotic swelling test, and the capacitation status of spermatozoa was determined through fluorescent microscopic evaluation. Additionally, flow cytometry was used to evaluate mitochondrial activity, oxidative stress, and the integrity of the sperm membrane and acrosome. The results indicated that cyclodextrin adversely affected sperm functions following freezing-thawing, notably increasing the rate of spermatozoa exhibiting pre-capacitation and mitochondrial activity by approximately 34% and 16%, respectively (p < 0.05). It was found that 20 µg/mL resveratrol prevented pre-capacitation (p < 0.05). Both resveratrol and resveratrol-loaded cyclodextrin groups improved post-thaw sperm qualities overall, demonstrating their utility for freezing ram semen. However, higher concentrations of resveratrol were found to negatively impact sperm functions.
Collapse
Affiliation(s)
- Ahmet Eser
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Siirt University, Siirt TR-56100, Turkey
| | - Selin Yağcıoğlu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul TR-34320, Turkey; (S.Y.); (R.A.); (K.D.); (K.A.)
| | - Ramazan Arıcı
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul TR-34320, Turkey; (S.Y.); (R.A.); (K.D.); (K.A.)
| | - Kamber Demir
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul TR-34320, Turkey; (S.Y.); (R.A.); (K.D.); (K.A.)
| | - Kemal Ak
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul TR-34320, Turkey; (S.Y.); (R.A.); (K.D.); (K.A.)
| |
Collapse
|
3
|
Pilsova Z, Pilsova A, Zelenkova N, Klusackova B, Chmelikova E, Postlerova P, Sedmikova M. Hydrogen sulfide and its potential as a possible therapeutic agent in male reproduction. Front Endocrinol (Lausanne) 2024; 15:1427069. [PMID: 39324123 PMCID: PMC11423738 DOI: 10.3389/fendo.2024.1427069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
Hydrogen sulfide (H2S) is an endogenously produced signaling molecule that belongs to the group of gasotransmitters along with nitric oxide (NO) and carbon monoxide (CO). H2S plays a pivotal role in male reproductive processes. It is produced in various tissues and cells of the male reproductive system, including testicular tissue, Leydig and Sertoli cells, epididymis, seminal plasma, prostate, penile tissues, and sperm cells. This review aims to summarize the knowledge about the presence and effects of H2S in male reproductive tissues and outline possible therapeutic strategies in pathological conditions related to male fertility, e. g. spermatogenetic disorders and erectile dysfunction (ED). For instance, H2S supports spermatogenesis by maintaining the integrity of the blood-testicular barrier (BTB), stimulating testosterone production, and providing cytoprotective effects. In spermatozoa, H2S modulates sperm motility, promotes sperm maturation, capacitation, and acrosome reaction, and has significant cytoprotective effects. Given its vasorelaxant effects, it supports the erection of penile tissue. These findings suggest the importance and therapeutic potential of H2S in male reproduction, paving the way for further research and potential clinical applications.
Collapse
Affiliation(s)
- Zuzana Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aneta Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Natalie Zelenkova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Barbora Klusackova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Eva Chmelikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavla Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Marketa Sedmikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
4
|
Yan B, Wang J, Zhou Y, Pei L, Zhang F, Gao B, Wang H. The application of mean number of DNA breakpoints in sperm cryopreservation. Cryobiology 2024; 116:104937. [PMID: 38942068 DOI: 10.1016/j.cryobiol.2024.104937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Growing concerns over declining male semen quality and rising infertility have shifted attention to male fertility. Sperm cryopreservation emerges as a crucial tool in preserving male fertility, especially for patients who need proactive preservation, such as cancer patients before undergoing radiation or chemotherapy. Although cryopreservation does not directly address infertility, effective preservation can support future fertility. However, the process may compromise sperm DNA integrity. Despite their impairment, damaged sperm often retain vitality and may still have the potential to fertilize an egg. Nonetheless, if damaged sperm fertilize an egg, excessive DNA damage could impede embryo implantation and development, despite the egg's repair capabilities. Consequently, precise detection of sperm DNA damage is crucial and urgent. To better address the issue of sperm DNA damage detection, we have introduced a novel fluorescence biosensor technology known as the TDT/SD Probe. This technology utilizes terminal deoxynucleotidyl transferase (TdT) and strand displacement probes to accurately detect the number of sperm DNA breakage points during the cryopreservation process. Experimental results reveal that the number of sperm DNA breakpoints significantly increases after both sperm vitrification (8.17 × 105) and conventional slow freezing (10.80 × 105), compared to the DNA breakpoints of fresh semen samples (5.19 × 105). However, sperm vitrification has the least impact on sperm breakage points. This research provides innovative means for further optimizing sperm preservation techniques by offering a novel DNA damage detection method, enabling more precise assessment of sperm DNA damage during the freezing process.
Collapse
Affiliation(s)
- Bei Yan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China; Institute of Medical Sciences, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Juan Wang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Yue Zhou
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Liguo Pei
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Fan Zhang
- Reproductive Center, Yinchuan Women and Children Healthcare Hospital, Yinchuan, 750004, China
| | - Bianbian Gao
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China.
| | - Hongyan Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangdong, 510006, China.
| |
Collapse
|
5
|
Brair VL, Correia LFL, Barbosa NO, Braga RF, Taira AR, da Silva AA, Brandão FZ, Ungerfeld R, Souza-Fabjan JMG. The association of resveratrol and AFPI did not enhance the cryoresistance of ram sperm. Anim Reprod 2024; 21:e20230159. [PMID: 38384723 PMCID: PMC10878549 DOI: 10.1590/1984-3143-ar2023-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Cryoprotectants are required to reduce damage caused to the cells due to low temperatures during the cryopreservation. Antifreeze proteins (AFP) have a well-known role in cell membrane protection, while resveratrol is a potent antioxidant. This study assessed the effect of the association of resveratrol concentrations and AFP I in a ram semen extender. Pooled semen of four rams was allocated into six treatments in a factorial arrangement: (CONT, only the semen extender); only AFP I (ANT: 0.1 µg/mL of AFP I), only resveratrol, one treatment with two levels (10 µM/mL or 50 µM/mL of resveratrol); and two treatments with the interactions, with one AFP I and one of the two levels of resveratrol (0.1 µg/mL of AFP I with 10 µM/mL resveratrol; 0.1 µg/mL of AFP I with 50 µM/mL resveratrol). No interaction between factors was observed on sperm kinetics, plasma membrane integrity, hypo-osmotic test, and mitochondrial activity parameters. There was a high probability (P = 0.06) of reducing sperm cells with functional membrane percentage in the hypo-osmotic test and increasing the percentage of sperm with high mitochondrial activity (P = 0.07) was observed in AFP presence. An interaction of AFP and resveratrol was observed in non-capacitated sperm (P = 0.009), acrosomal reaction (P = 0.034), and sperm binding (P = 0.04). In conclusion, the association of resveratrol and AFP did not improve the quality of frozen-thawed semen and even promoted deleterious effects compared to their single addition in the semen extender. The supplementation of 50 µM/mL of resveratrol improved the outcomes of frozen-thawed ram sperm, being a potential cryoprotectant.
Collapse
Affiliation(s)
- Viviane Lopes Brair
- Faculdade de Veterinária, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | | | | | | | | | - Andreza Amaral da Silva
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | | | - Rodolfo Ungerfeld
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | | |
Collapse
|
6
|
Almubarak A, Lee S, Yu IJ, Jeon Y. Effects of Nobiletin supplementation on the freezing diluent on porcine sperm cryo-survival and subsequent in vitro embryo development. Theriogenology 2024; 214:314-322. [PMID: 37956580 DOI: 10.1016/j.theriogenology.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Nobiletin (NOB) is a bioflavonoid compound isolated from citrus fruit peels. The present study aimed to elucidate whether NOB facilitates the porcine sperm cryosurvival and embryo development after in vitro fertilization (IVF). To this end, spermatozoa were diluted and cryopreserved in a freezing extender supplemented with 0 (control), 50, 100, 150, and 200 μM Nobiletin. The kinematic patterns of frozen-thawed (FT) sperm were assessed after 30 and 90 min incubation using a Sperm Class Analyzer (SCA). Viability, acrosome integrity, and mitochondrial membrane potential (MMP) were measured by fluorescence microscopy 30 min after thawing using SYBR-14/PI, PSA/FITC, and R123/PI, respectively. Lipid peroxidation was determined using MDA assay after incubation for 90 min. The addition of 100 μM and 150 μM NOB to the extender significantly improved sperm progressive motility, and acrosome integrity compared to the control group (P < 0.05). The proportion of viable spermatozoa was significantly higher in the 150 μM NOB group. MDA levels were less in 50 μM and 150 μM NOB treated groups compared to the control. In addition, IVF with FT sperm was used to assess the embryo developmental competence. Treatment with 150 μM NOB before cryopreservation increased the cleavage and blastocyst formation rates compared to the control group. Furthermore, the relative expression of POU5F1 and AMPK, genes related to pluripotency and cell differentiation were significantly upregulated in embryos resulting from NOB-treated sperm compared to the control group. These results suggest that Nobiletin is a functionally novel phytochemical to mitigate oxidative stress during the freezing-thawing of porcine spermatozoa as reflected by improved FT sperm quality and IVF outcome.
Collapse
Affiliation(s)
- Areeg Almubarak
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea; Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, P.O. Box 204, Hilat Kuku, Khartoum North, 11111, Sudan
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 9 34134, South Korea
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Yubyeol Jeon
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| |
Collapse
|
7
|
Zhu Z, Zhao H, Cui H, Adetunji AO, Min L. Resveratrol Improves the Frozen-Thawed Ram Sperm Quality. Animals (Basel) 2023; 13:3887. [PMID: 38136923 PMCID: PMC10740518 DOI: 10.3390/ani13243887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Cryopreservation generates a substantial quantity of ROS in semen, leading to a decline in sperm quality and fertilization capacity. The objective of this study was to investigate the effects of resveratrol and its optimal concentration on ram sperm quality after cryopreservation. Ram semen was diluted with a freezing medium containing different concentrations of resveratrol (0, 25, 50, 75, and 100 μM). After thawing, various sperm parameters such as total motility, progressive motility, acrosome integrity, plasma membrane integrity, mitochondrial membrane potential, glutathione (GSH) content, glutathione synthase (GPx) activity, superoxide dismutase (SOD) activity, catalase (CAT) activity, lipid peroxidation (LPO) content, malondialdehyde (MDA) content, ROS level, SIRT1 level, DNA oxidative damage, and AMPK phosphorylation level were assessed. In addition, post-thaw sperm apoptosis was evaluated. Comparatively, the addition of resveratrol up to 75 μM significantly improved the sperm motility and sperm parameters of cryopreserved ram sperm. Specifically, 50 μM resveratrol demonstrated a notable enhancement in acrosome and plasma membrane integrity, antioxidant capacity, mitochondrial membrane potential, adenosine triphosphate (ATP) content, SIRT1 level, and AMPK phosphorylation levels compared to the control group (p < 0.05). It also significantly (p < 0.05) reduced the oxidative damage to sperm DNA. However, detrimental effects of resveratrol were observed at a concentration of 100 μM resveratrol. In conclusion, the addition of 50 μM resveratrol to the cryopreservation solution is optimal for enhancing the quality of cryopreserved ram sperm.
Collapse
Affiliation(s)
- Zhendong Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Z.Z.); (H.Z.); (H.C.)
| | - Haolong Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Z.Z.); (H.Z.); (H.C.)
| | - Haixiang Cui
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Z.Z.); (H.Z.); (H.C.)
| | - Adedeji O. Adetunji
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA;
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Z.Z.); (H.Z.); (H.C.)
| |
Collapse
|
8
|
Tachibana R, Takeuchi H, Yoshikawa-Terada K, Maezawa T, Nishioka M, Takayama E, Tanaka H, Tanaka K, Hyon SH, Gen Y, Kondo E, Ikeda T. Carboxylated Poly-L-lysine Potentially Reduces Human Sperm DNA Fragmentation after Freeze-Thawing, and Its Function Is Enhanced by Low-Dose Resveratrol. Cells 2023; 12:2585. [PMID: 37998320 PMCID: PMC10670029 DOI: 10.3390/cells12222585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Sperm DNA fragmentation (SDF) that occurs during the freezing-thawing of sperm may negatively impact the treatment outcomes of assisted reproductive technologies (ART). In a previous study, we developed a human sperm cryopreservation reagent containing carboxylated poly-L-lysine (CPLL) that reduced SDF after freeze-thawing compared with clinically popular cryopreservation reagents containing human serum albumin. However, it is unclear whether CPLL reduces SDF, as it differed from the constituents of the commercial cryopreservation reagents used for comparison. Therefore, here, we examined whether CPLL reduces the SDF of human sperm and evaluated reactive oxygen species (ROS) levels and lipid peroxidation (LPO), which are the causes of SDF; mitochondrial injury, ROS production; and impaired sperm motility. Furthermore, optimal antioxidants and their concentrations that could further enhance the reduction in SDF were determined for future clinical application in ART and underwent the same functional evaluations. CPLL can reduce SDF via inhibition of intracytoplasmic ROS and LPO. Furthermore, the addition of 0.1 mM resveratrol avoided the enhancement of SDF, which potentially affects mitochondrial and cytoplasmic ROS and LPO. This novel human sperm cryopreservation reagent containing CPLL and resveratrol has the potential to improve treatment outcomes in ART using frozen sperm.
Collapse
Affiliation(s)
- Ryota Tachibana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edo-bashi, Tsu 514-8507, Japan; (R.T.); (K.Y.-T.); (T.M.); (M.N.); (E.K.); (T.I.)
- Center of Advanced Reproductive Medicine, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan;
| | - Hiroki Takeuchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edo-bashi, Tsu 514-8507, Japan; (R.T.); (K.Y.-T.); (T.M.); (M.N.); (E.K.); (T.I.)
- Center of Advanced Reproductive Medicine, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan;
| | - Kento Yoshikawa-Terada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edo-bashi, Tsu 514-8507, Japan; (R.T.); (K.Y.-T.); (T.M.); (M.N.); (E.K.); (T.I.)
- Center of Advanced Reproductive Medicine, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan;
| | - Tadashi Maezawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edo-bashi, Tsu 514-8507, Japan; (R.T.); (K.Y.-T.); (T.M.); (M.N.); (E.K.); (T.I.)
- Center of Advanced Reproductive Medicine, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan;
| | - Mikiko Nishioka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edo-bashi, Tsu 514-8507, Japan; (R.T.); (K.Y.-T.); (T.M.); (M.N.); (E.K.); (T.I.)
- Center of Advanced Reproductive Medicine, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan;
- Obstetrics and Gynecology, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan; (H.T.); (K.T.)
| | - Erina Takayama
- Center of Advanced Reproductive Medicine, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan;
- Obstetrics and Gynecology, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan; (H.T.); (K.T.)
| | - Hiroaki Tanaka
- Obstetrics and Gynecology, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan; (H.T.); (K.T.)
| | - Kayo Tanaka
- Obstetrics and Gynecology, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan; (H.T.); (K.T.)
| | - Suong-hyu Hyon
- BMG, Inc., 45 Minamimatsunoki-cho, Higashikujo, Minami-ku, Kyoto 601-8023, Japan; (S.-h.H.); (Y.G.)
| | - Yuki Gen
- BMG, Inc., 45 Minamimatsunoki-cho, Higashikujo, Minami-ku, Kyoto 601-8023, Japan; (S.-h.H.); (Y.G.)
| | - Eiji Kondo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edo-bashi, Tsu 514-8507, Japan; (R.T.); (K.Y.-T.); (T.M.); (M.N.); (E.K.); (T.I.)
- Center of Advanced Reproductive Medicine, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan;
- Obstetrics and Gynecology, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan; (H.T.); (K.T.)
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edo-bashi, Tsu 514-8507, Japan; (R.T.); (K.Y.-T.); (T.M.); (M.N.); (E.K.); (T.I.)
- Center of Advanced Reproductive Medicine, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan;
- Obstetrics and Gynecology, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507, Japan; (H.T.); (K.T.)
| |
Collapse
|
9
|
Moretti E, Signorini C, Corsaro R, Giamalidi M, Collodel G. Human Sperm as an In Vitro Model to Assess the Efficacy of Antioxidant Supplements during Sperm Handling: A Narrative Review. Antioxidants (Basel) 2023; 12:antiox12051098. [PMID: 37237965 DOI: 10.3390/antiox12051098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Spermatozoa are highly differentiated cells that produce reactive oxygen species (ROS) due to aerobic metabolism. Below a certain threshold, ROS are important in signal transduction pathways and cellular physiological processes, whereas ROS overproduction damages spermatozoa. Sperm manipulation and preparation protocols during assisted reproductive procedures-for example, cryopreservation-can result in excessive ROS production, exposing these cells to oxidative damage. Thus, antioxidants are a relevant topic in sperm quality. This narrative review focuses on human spermatozoa as an in vitro model to study which antioxidants can be used to supplement media. The review comprises a brief presentation of the human sperm structure, a general overview of the main items of reduction-oxidation homeostasis and the ambivalent relationship between spermatozoa and ROS. The main body of the paper deals with studies in which human sperm have been used as an in vitro model to test antioxidant compounds, including natural extracts. The presence and the synergic effects of different antioxidant molecules could potentially lead to more effective products in vitro and, in the future, in vivo.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Maria Giamalidi
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, 15701 Athens, Greece
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
10
|
Antioxidants and Oxidants in Boar Spermatozoa and Their Surrounding Environment Are Associated with AMPK Activation during Liquid Storage. Vet Sci 2023; 10:vetsci10030214. [PMID: 36977253 PMCID: PMC10056163 DOI: 10.3390/vetsci10030214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Activation of the AMP-activated protein kinase (AMPK) has been demonstrated to be beneficial for boar sperm quality and functionality, while the underlying mechanism of AMPK activation of boar spermatozoa remains obscure. This study aimed to explore the effect of antioxidants and oxidants in boar spermatozoa and their surrounding fluid (SF) on the activation of AMPK during the liquid storage. Ejaculates from Duroc boars, routinely used for semen production, were collected and diluted to a final concentration of 25 × 106/mL. In experiment 1, twenty-five semen samples from eighteen boars were stored at 17 °C for 7 days. In experiment 2, three pooled semen samples created from nine ejaculates of nine boars were used, and each sample was treated with 0, 0.1, 0.2, and 0.4 μM/L H2O2 and stored at 17 °C for 3 h. Sperm quality and functionality, antioxidants and oxidants in boar spermatozoa and SF, the intracellular AMP/ATP ratio, and the expression levels of the phosphorylated AMPK (Thr172) were determined. Sperm quality significantly decreased with storage time in terms of viability (p < 0.05). Antioxidant and oxidant levels were markedly affected with storage time, with a decline in the SF total antioxidant capacity (TAC) (p < 0.05), SF malondialdehyde (MDA) (p < 0.05), and the sperm’s total oxidant status (TOS), as well as a fluctuation in sperm superoxidase dismutase-like (SOD-like) activity (p < 0.05). The intracellular AMP/ATP ratio increased (p < 0.05) on day 4 and subsequently decreased to its lowest value on days 6 and 7 (p < 0.05). The phosphorylated AMPK levels increased from day 2 to day 7 (p < 0.05). Correlation analyses indicate that sperm quality during liquid storage was correlated to antioxidants and oxidants in spermatozoa and SF (p < 0.05), which were correlated to the phosphorylation of sperm AMPK (p < 0.05). Treatment with H2O2 induced damages in sperm quality (p < 0.05), a decline in antioxidant levels (SF TAC, p < 0.05; sperm SOD-like activity, p < 0.01), an increase in oxidant levels (SF MDA, p < 0.05; intracellular ROS production, p < 0.05), a higher AMP/ATP ratio (p < 0.05), and phosphorylated AMPK levels (p < 0.05) in comparison with the control. The results suggest that antioxidants and oxidants in boar spermatozoa and SF are involved in AMPK activation during liquid storage.
Collapse
|
11
|
Zhang R, Guo X, Liang C, Pei J, Bao P, Yin M, Wu F, Chu M, Yan P. Identification and Validation of Yak ( Bos grunniens) Frozen-Thawed Sperm Proteins Associated with Capacitation and the Acrosome Reaction. J Proteome Res 2022; 21:2754-2770. [PMID: 36251486 DOI: 10.1021/acs.jproteome.2c00528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To achieve fertilization, mammalian spermatozoa must undergo capacitation and the acrosome reaction (AR) within the female reproductive tract. However, the effects of cryopreservation on sperm maturation and fertilizing potential have yet to be established. To gain insight into changes in protein levels within sperm cells prepared for use in the context of fertilization, a comprehensive quantitative proteomic profiling approach was used to analyze frozen-thawed Ashidan yak spermatozoa under three sequential conditions: density gradient centrifugation-based purification, incubation in a capacitation medium, and treatment with the calcium ionophore A23187 to facilitate AR induction. In total, 3280 proteins were detected in these yak sperm samples, of which 3074 were quantified, with 68 and 32 being significantly altered following sperm capacitation and AR induction. Differentially abundant capacitation-related proteins were enriched in the metabolism and PPAR signaling pathways, while differentially abundant AR-related proteins were enriched in the AMPK signaling pathway. These data confirmed a role for superoxide dismutase 1 (SOD1) as a regulator of sperm capacitation while also offering indirect evidence that heat shock protein 90 alpha (HSP90AA1) regulates the AR. Together, these findings offer a means whereby sperm fertility-related marker proteins can be effectively identified. Data are available via Proteome Xchange with identifier PXD035038.
Collapse
Affiliation(s)
- Renzheng Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.,College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Mancai Yin
- Yak Breeding and Extension Service Center in Qinghai Province, Xining 810000, China
| | - Fude Wu
- Yak Breeding and Extension Service Center in Qinghai Province, Xining 810000, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
12
|
Escada-Rebelo S, Cristo MI, Ramalho-Santos J, Amaral S. Mitochondria-Targeted Compounds to Assess and Improve Human Sperm Function. Antioxid Redox Signal 2022; 37:451-480. [PMID: 34847742 DOI: 10.1089/ars.2021.0238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Currently 10%-15% of couples in reproductive age face infertility issues. More importantly, male factor contributes to 50% of these cases (either alone or in combination with female causes). Among various reasons, impaired sperm function is the main cause for male infertility. Furthermore, mitochondrial dysfunction and oxidative stress due to increased reactive oxygen species (ROS) production, particularly of mitochondrial origin, are believed to be the main contributors. Recent Advances: Mitochondrial dysfunction, particularly due to increased ROS production, has often been linked to impaired sperm function/quality. For decades, different methods and approaches have been developed to assess mitochondrial features that might correlate with sperm functionality. This connection is now completely accepted, with mitochondrial functionality assessment used more commonly as a readout of sperm functionality. More recently, mitochondria-targeted compounds are on the frontline for both assessment and therapeutic approaches. Critical Issues: In this review, we summarize the current methods for assessing key mitochondrial parameters known to reflect sperm quality as well as therapeutic strategies using mitochondria-targeted antioxidants aiming to improve sperm function in various situations, particularly after sperm cryopreservation. Future Directions: Although more systematic research is needed, mitochondria-targeted compounds definitely represent a promising tool to assess as well as to protect and improve sperm function. Antioxid. Redox Signal. 37, 451-480.
Collapse
Affiliation(s)
- Sara Escada-Rebelo
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| | - Maria Inês Cristo
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sandra Amaral
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Ghantabpour T, Nashtaei MS, Nekoonam S, Rezaei H, Amidi F. The Effect of Astaxanthin on Motility, Viability, Reactive Oxygen Species, Apoptosis, and Lipid Peroxidation of Human Spermatozoa During the Freezing-Thawing Process. Biopreserv Biobank 2022; 20:367-373. [PMID: 35984938 DOI: 10.1089/bio.2021.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cryopreservation of spermatozoa is a general procedure to preserve viable sperm for an indefinite period. Despite the efficiency of sperm cryopreservation, excessive reactive oxygen species (ROS) production during cryopreservation can induce structural and functional changes in spermatozoa. Also, cryopreservation has been shown to decrease the spermatozoa's antioxidant activity inducing them to be more sensitive to damage caused by ROS. Experimental evidence suggests that astaxanthin (AXT) has essential activities such as antioxidant, antibacterial, and antithrombotic properties. Therefore, this study aimed to evaluate the effect of AXT on the sperm quality of healthy men during freezing-thawing. In the first phase, 10 semen samples with different concentrations of AXT (0.0, 0.5, 1, and 2 μM) were cryopreserved to achieve an optimal dose of AXT. Then, motility, viability, and phosphatidylserine (PS) externalization were evaluated. In the second phase, 25 samples were collected and divided into 3 groups: fresh group, control group (untreated frozen-thawed samples), and AXT group (treated frozen-thawed with AXT). Then, samples were cryopreserved in freezing media supplemented with or without the optimal concentration of AXT (1 μM). After thawing, the levels of sperm parameters, including motility (using a computer-assisted sperm analyzer), viability (eosin-nigrosin), early apoptotic change (annexin V/propidium iodide), ROS (flow cytometry), and lipid peroxidation (LPO) (using enzyme-linked immunosorbent assay), were evaluated. Our results showed that the addition of 1 μM AXT to sperm freezing media improved all parameters of sperm motility and viability (p ≤ 0.05). Furthermore, it could reduce the levels of ROS parameters (intracellular hydrogen peroxide and superoxide) compared with the control group (p ≤ 0.05). Also, AXT significantly decreased the level of PS externalization (p ≤ 0.05) and LPO (p ≤ 0.05) after the freezing-thawing process. In conclusion, our findings demonstrated that human semen treatment with 1 μM AXT before the freezing-thawing process has protective effects against oxidative stress and could diminish the destructive effects of this process on sperm quality.
Collapse
Affiliation(s)
- Taha Ghantabpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Nekoonam
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rezaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Lan Q, Xue L, Cao J, Xie Y, Xiao T, Fang S. Caffeic Acid Phenethyl Ester (CAPE) Improves Boar Sperm Quality and Antioxidant Capacity in Liquid Preservation (17°C) Linked to AMPK Activity Maintenance. Front Vet Sci 2022; 9:904886. [PMID: 35754532 PMCID: PMC9219730 DOI: 10.3389/fvets.2022.904886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Liquid preservation of boar sperm is crucial for artificial insemination application in pig production. However, time-dependent oxidative damage to sperm is one of the major challenges during the liquid preservation period. Caffeic acid phenethyl ester (CAPE) possesses excellent antioxidant properties and has potential therapeutic use in reproductive organ injury linked to oxidative stress. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) involves in modulating the cellular redox state and exerts a beneficial effect on sperm preservation. In the present study, we firstly assessed different concentrations of CAPE that affect sperm quality during liquid storage to determine the appropriate addition. To further investigate whether CAPE exerts protective effects on boar sperm through modulation of AMPK activity, sperm quality parameters, antioxidant capacity, and marker protein expressions were evaluated under co-incubation with H2O2. The results showed that sperm treated with 210 μmol/L CAPE exhibited the highest motion parameters (total motility and progressive motility) and best functional integrity (mitochondrial activity, plasma membrane integrity, and acrosomal integrity). Even in the presence of H2O2, the addition of 210 μmol/L CAPE not only significantly improved sperm quality parameters, but also elevated CAT, SOD, and GSH-Px activities to enhance sperm antioxidant capacity. In addition, we found that CAPE could affect the protein activities of AMPK, phospho-AMPK α (p-AMPK), SOD, and Caspase-3 regardless of whether H2O2 is present or not. Our findings suggested that CAPE has potential application in liquid preservation of boar sperm and preliminary indicated that CAPE-induced improvement of sperm quality and antioxidant capacity should be mediated through conservation of AMPK activity. Further studies are required to illustrate the specific mechanism by which CAPE attenuates oxidative stress-mediated damages dependent on AMPK activity.
Collapse
Affiliation(s)
- Qun Lan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li'e Xue
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiacheng Cao
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingyu Xie
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianfang Xiao
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoming Fang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
The Activated AMPK/mTORC2 Signaling Pathway Associated with Oxidative Stress in Seminal Plasma Contributes to Idiopathic Asthenozoospermia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4240490. [PMID: 35720189 PMCID: PMC9200551 DOI: 10.1155/2022/4240490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/09/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Asthenozoospermia is a common form of abnormal sperm quality in idiopathic male infertility. While most sperm-mediated causes have been investigated in detail, the significance of seminal plasma has been neglected. Herein, we aimed to investigate the possible pathogenic factors leading to decreased sperm motility based on seminal plasma. Semen was collected from normo- (NOR, n = 70), idiopathic oligo- (OLI, n = 57), and idiopathic asthenozoospermic (AST, n = 53) patients. Using attenuated total reflection-Fourier transform infrared coupled with chemometrics, distinct differences in the biochemical compositions of nucleic acids, protein structure (amides I, II, and III), lipids, and carbohydrates in seminal plasma of AST were observed when compared to NOR and OLI. Compared with NOR and OLI, the levels of peptide aggregation, protein phosphorylation, unsaturated fatty acid, and lipid to protein ratio were significantly increased in AST; however, the level of lipid saturation was significantly decreased in seminal plasma of AST. Compared with NOR, the levels of ROS, MDA, 8-iso-prostaglandin F2α (8-isoPGF2α), and the ratio of phospho-AMPKα/AMPKα1 were significantly increased in AST; however, the levels of SOD, glutathione S-transferase (GSTs), protein carbonyl derivative (PC), and the ratio of phospho-Rictor/Rictor were significantly decreased in seminal plasma of AST. Changes of the AMPK/mTORC2 signaling in the seminal microenvironment possibly induce abnormal glucose and lipid metabolism, which impairs energy production. Oxidative stress potentially damages seminal plasma lipids and proteins, which in turn leads to impaired sperm structure and function. These findings provide evidence that the changes in seminal plasma compositions, oxidative stress, and activation of the AMPK/mTORC2 signaling contribute to the development of asthenozoospermia.
Collapse
|
16
|
Wang X, Li X, Liu Y, Jiang X, Wu L, Liu R, Jin R, Zhou N, Cao C, Hu X, Xu B, Tong X, Bai W, Bai S. Cyanidin-3-Ο-glucoside supplementation in cryopreservation medium improves human sperm quality. Andrologia 2022; 54:e14493. [PMID: 35671952 DOI: 10.1111/and.14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/16/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
Currently, the cryopreservation of human spermatozoa must overcome the adverse effects of excessive oxidation. In this study, we aimed to evaluate the effect of supplementation of cryopreservation medium with cyanidin-3-Ο-glucoside (C3G) on sperm quality. Semen samples were obtained from men with normozoospermia according to WHO criteria (n = 39). The sperm parameter values were compared after cryopreservation in medium supplemented with and without C3G.Compared with the control group (without additive), low doses (50 μM and 100 μM) of C3G improved sperm viability and motility and decreased the reactive oxygen species (ROS) of spermatozoa, while high doses (200 μM) of C3G did not obviously enhance sperm quality. The amount of DNA fragmentation index (DFI) and high DNA stainability (HDS) after freezing were higher in the control group than in the C3G supplementation groups. Low-concentration C3G supplementation (50 μM) was negatively correlated with sperm ROS levels (r = -0.2, p = 0.03). Collectively, our findings suggest that C3G could be an efficient semen cryoprotectant that ameliorates oxidative stress in human sperm during cryopreservation.
Collapse
Affiliation(s)
- Xiaohan Wang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, People's Republic of China
| | - Yixun Liu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xiaohua Jiang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Limin Wu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Ran Liu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Rentao Jin
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Naru Zhou
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Cheng Cao
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xuechun Hu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Bo Xu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xianhong Tong
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, People's Republic of China
| | - Shun Bai
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| |
Collapse
|
17
|
Ureña I, González C, Ramón M, Gòdia M, Clop A, Calvo JH, Carabaño MJ, Serrano M. Exploring the ovine sperm transcriptome by RNAseq techniques. I Effect of seasonal conditions on transcripts abundance. PLoS One 2022; 17:e0264978. [PMID: 35286314 PMCID: PMC8920283 DOI: 10.1371/journal.pone.0264978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/21/2022] [Indexed: 01/20/2023] Open
Abstract
Understanding the cell molecular changes occurring as a results of climatic circumstances is crucial in the current days in which climate change and global warming are one of the most serious challenges that living organisms have to face. Sperm are one of the mammals’ cells most sensitive to heat, therefore evaluating the impact of seasonal changes in terms of its transcriptional activity can contribute to elucidate how these cells cope with heat stress events. We sequenced the total sperm RNA from 64 ejaculates, 28 collected in summer and 36 collected in autumn, from 40 Manchega rams. A highly rich transcriptome (11,896 different transcripts) with 90 protein coding genes that exceed an average number of 5000 counts were found. Comparing transcriptome in the summer and autumn ejaculates, 236 significant differential abundance genes were assessed, most of them (228) downregulated. The main functions that these genes are related to sexual reproduction and negative regulation of protein metabolic processes and kinase activity. Sperm response to heat stress supposes a drastic decrease of the transcriptional activity, and the upregulation of only a few genes related with the basic functions to maintain the organisms’ homeostasis and surviving. Rams’ spermatozoids carry remnant mRNAs which are retrospectively indicators of events occurring along the spermatogenesis process, including abiotic factors such as environmental temperature.
Collapse
Affiliation(s)
- Irene Ureña
- Departamento de Mejora Genética Animal, CSIC-INIA, Madrid, Spain
| | - Carmen González
- Departamento de Mejora Genética Animal, CSIC-INIA, Madrid, Spain
| | | | - Marta Gòdia
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Catalonia, Spain
| | - Alex Clop
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Catalonia, Spain
| | - Jorge H. Calvo
- Unidad de Tecnología en Producción Animal, CITA, Zaragoza, Spain
| | | | - Magdalena Serrano
- Departamento de Mejora Genética Animal, CSIC-INIA, Madrid, Spain
- * E-mail:
| |
Collapse
|
18
|
Mahdavinezhad F, Gilani MAS, Gharaei R, Ashrafnezhad Z, Valipour J, Nashtai MS, Amidi F. Protective roles of seminal plasma exosomes and microvesicles during human sperm cryopreservation. Reprod Biomed Online 2022; 45:341-353. [DOI: 10.1016/j.rbmo.2022.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|
19
|
Rezaie FS, Hezavehei M, Sharafi M, Shahverdi A. Improving the post-thaw quality of rooster semen using the extender supplemented with resveratrol. Poult Sci 2021; 100:101290. [PMID: 34311322 PMCID: PMC8325101 DOI: 10.1016/j.psj.2021.101290] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Avian spermatozoa are highly susceptible to reactive oxygen species (ROS) produced during the cryopreservation. The aim of the current study was to investigate the antioxidant effects of resveratrol (RSV) during rooster semen cryopreservation. Changes in expression of AMP-activated protein kinase as a possible mechanism behind the beneficial effects of resveratrol were also evaluated. Semen samples were collected from ten Ross broiler breeders (52-wk) using abdominal massage, then divided into 4 equal aliquots and cryopreserved in Beltsville extender that contained different concentrations (0 µM, 0.01µM, 0.1µM, and 1µM) of RSV. higher percentage (P < 0.05) of total motility and membrane integrity was observed in RSV-0.1 compared to the other frozen groups. Moreover, higher percentage of sperm mitochondrial activity was observed in the RSV-0.01 and RSV-0.1 compared to the frozen control (P < 0.05). The lowest percentage of apoptotic like changes was found in the RSV-0.1 in comparison to the other groups (P < 0.05). RSV-0.01 and RSV-1 groups produced the lowest levels of H2O2 and O2- compared to the other frozen groups, respectively. Malondialdehyde (MDA) concentration, velocity average path (VAP), and linearity (LIN) were not affected by different concentrations of RSV (P > 0.05). We observed a dose-dependent increase in AMP-activated protein kinase expression in groups exposed to RSV. Thus, RSV-1 increased AMP-activated protein kinase phosphorylation but had no positive effects on post thaw sperm parameters. Our findings suggest that RSV-0.1 improve thawed sperm functions, and these effects might be mediated through activation of AMP-activated protein kinase.
Collapse
Affiliation(s)
- Fereshteh Sadat Rezaie
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohsen Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Abdolhosein Shahverdi
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
20
|
Tvrdá E, Benko F, Slanina T, du Plessis SS. The Role of Selected Natural Biomolecules in Sperm Production and Functionality. Molecules 2021; 26:5196. [PMID: 34500629 PMCID: PMC8434568 DOI: 10.3390/molecules26175196] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence from in vivo as well as in vitro studies indicates that natural biomolecules may play important roles in the prevention or management of a wide array of chronic diseases. Furthermore, the use of natural compounds in the treatment of male sub- or infertility has been proposed as a potential alternative to conventional therapeutic options. As such, we aimed to evaluate the effects of selected natural biomolecules on the sperm production, structural integrity, and functional activity. At the same time, we reviewed their possible beneficial or adverse effects on male reproductive health. Using relevant keywords, a literature search was performed to collect currently available information regarding molecular mechanisms by which selected natural biomolecules exhibit their biological effects in the context of male reproductive dysfunction. Evidence gathered from clinical trials, in vitro experiments and in vivo studies suggest that the selected natural compounds affect key targets related to sperm mitochondrial metabolism and motion behavior, oxidative stress, inflammation, DNA integrity and cell death. The majority of reports emphasize on ameliorative, stimulating and protective effects of natural biomolecules on the sperm function. Nevertheless, possible adverse and toxic behavior of natural compounds has been indicated as well, pointing out to a possible dose-dependent impact of natural biomolecules on the sperm survival and functionality. As such, further research leading to a deeper understanding of the beneficial or adverse roles of natural compounds is necessary before these can be employed for the management of male reproductive dysfunction.
Collapse
Affiliation(s)
- Eva Tvrdá
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Filip Benko
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Tomáš Slanina
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Stefan S. du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates;
| |
Collapse
|
21
|
De Luca MN, Colone M, Gambioli R, Stringaro A, Unfer V. Oxidative Stress and Male Fertility: Role of Antioxidants and Inositols. Antioxidants (Basel) 2021; 10:antiox10081283. [PMID: 34439531 PMCID: PMC8389261 DOI: 10.3390/antiox10081283] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Infertility is defined as a couple’s inability to conceive after at least one year of regular unprotected intercourse. This condition has become a global health problem affecting approximately 187 million couples worldwide and about half of the cases are attributable to male factors. Oxidative stress is a common reason for several conditions associated with male infertility. High levels of reactive oxygen species (ROS) impair sperm quality by decreasing motility and increasing the oxidation of DNA, of protein and of lipids. Multi-antioxidant supplementation is considered effective for male fertility parameters due to the synergistic effects of antioxidants. Most of them act by decreasing ROS concentration, thus improving sperm quality. In addition, other natural molecules, myo-inositol (MI) and d-chiro–inositol (DCI), ameliorate sperm quality. In sperm cells, MI is involved in many transduction mechanisms that regulate cytoplasmic calcium levels, capacitation and mitochondrial function. On the other hand, DCI is involved in the downregulation of steroidogenic enzyme aromatase, which produces testosterone. In this review, we analyze the processes involving oxidative stress in male fertility and the mechanisms of action of different molecules.
Collapse
Affiliation(s)
- Maria Nunzia De Luca
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.N.D.L.); (R.G.); (V.U.)
- System Biology Group Lab, 00161 Rome, Italy
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Riccardo Gambioli
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.N.D.L.); (R.G.); (V.U.)
- System Biology Group Lab, 00161 Rome, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
- Correspondence:
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.N.D.L.); (R.G.); (V.U.)
- System Biology Group Lab, 00161 Rome, Italy
| |
Collapse
|
22
|
Tiwari S, Mohanty TK, Bhakat M, Kumar N, Baithalu RK, Nath S, Yadav HP, Dewry RK. Comparative evidence support better antioxidant efficacy of mitochondrial-targeted (Mitoquinone) than cytosolic (Resveratrol) antioxidant in improving in-vitro sperm functions of cryopreserved buffalo (Bubalus bubalis) semen. Cryobiology 2021; 101:125-134. [PMID: 33933431 DOI: 10.1016/j.cryobiol.2021.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
The present study compared the effect of mitochondria-targeted (Mitoquinone, MitoQ) and untargeted cytosolic antioxidant (Resveratrol, RESV) supplementation on lipid peroxidation (LPO) and in-vitro sperm functions of cryopreserved buffalo bull semen. To optimize additive's concentration, sperm pellet obtained from twenty-four ejaculates was supplemented with different concentrations of MitoQ (20 nM, 100 nM, 200 nM); and RESV (10 μM, 25 μM, 50 μM) against control in the extender. The post-thaw sperm motility, livability, and membrane integrity were higher (P < 0.05) in 200 nM MitoQ and 50 μM RESV than other concentrations used. In another experiment, sperm pellet from thirty-two ejaculates was supplemented with 200 nM MitoQ and 50 μM RESV in the extender. Pre-freeze and post-thaw progressive motility and livability were higher (P < 0.05) in MitoQ (200 nM) than RESV (50 μM) treatment. MitoQ supplementation improved post-thaw membrane integrity (CFDA-PI) higher (P < 0.05) than RESV, however, hypo-osmotic swelling response observed no improvement with RESV treatment. Post-thaw LPO rate was lower (P < 0.05) and Bovine cervical mucus penetration was higher (P < 0.05) in MitoQ than RESV treatment. In post-thaw semen, MitoQ showed higher (P < 0.05) proportion of acrosome intact (FITC-PNA), live non-apoptotic (P < 0.01) sperm with a higher reduction (P < 0.05) in membrane scrambling. MitoQ improved (P < 0.01) proportion of sperm with high Mitochondrial Membrane Potential and low LPO (P < 0.01) than RESV treatment. In conclusion, improvement in post-thaw in-vitro sperm functions and cryo-tolerance was more evident in MitoQ than RESV supplemented buffalo bull semen. Our study provides a better strategy to mitigate oxidative stress by enhancing mitochondrial antioxidant system with targeted antioxidants than cytosolic antioxidant supplementation.
Collapse
Affiliation(s)
- S Tiwari
- Artificial Breeding Research Centre, LPM Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| | - T K Mohanty
- Artificial Breeding Research Centre, LPM Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| | - M Bhakat
- Artificial Breeding Research Centre, LPM Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| | - N Kumar
- Animal Reproduction, Gynaecology and Obstetrics, LPM Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| | - R K Baithalu
- Animal Reproduction, Gynaecology and Obstetrics, LPM Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| | - S Nath
- Artificial Breeding Research Centre, LPM Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| | - H P Yadav
- Artificial Breeding Research Centre, LPM Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| | - R K Dewry
- Artificial Breeding Research Centre, LPM Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
23
|
The Role of Resveratrol in Human Male Fertility. Molecules 2021; 26:molecules26092495. [PMID: 33923359 PMCID: PMC8123193 DOI: 10.3390/molecules26092495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/31/2022] Open
Abstract
Resveratrol (RSV) (3,4′,5 trihydroxystilbene) is a natural non-flavonoid polyphenol widely present in the Mediterranean diet. In particular, RSV is found in grapes, peanuts, berries, and red wine. Many beneficial effects of this molecule on human health have been reported. In fact, it improves some clinical aspects of various diseases, such as obesity, tumors, hypertension, Alzheimer’s disease, stroke, cardiovascular diseases, and diabetes mellitus. However, little is known about the relationship between this compound and male fertility and the few available results are often controversial. Therefore, this review evaluated the effects of RSV on human male fertility and the mechanisms through which this polyphenol could act on human spermatozoa.
Collapse
|
24
|
Boguenet M, Bouet PE, Spiers A, Reynier P, May-Panloup P. Mitochondria: their role in spermatozoa and in male infertility. Hum Reprod Update 2021; 27:697-719. [PMID: 33555313 DOI: 10.1093/humupd/dmab001] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The best-known role of spermatozoa is to fertilize the oocyte and to transmit the paternal genome to offspring. These highly specialized cells have a unique structure consisting of all the elements absolutely necessary to each stage of fertilization and to embryonic development. Mature spermatozoa are made up of a head with the nucleus, a neck, and a flagellum that allows motility and that contains a midpiece with a mitochondrial helix. Mitochondria are central to cellular energy production but they also have various other functions. Although mitochondria are recognized as essential to spermatozoa, their exact pathophysiological role and their functioning are complex. Available literature relative to mitochondria in spermatozoa is dense and contradictory in some cases. Furthermore, mitochondria are only indirectly involved in cytoplasmic heredity as their DNA, the paternal mitochondrial DNA, is not transmitted to descendants. OBJECTIVE AND RATIONAL This review aims to summarize available literature on mitochondria in spermatozoa, and, in particular, that with respect to humans, with the perspective of better understanding the anomalies that could be implicated in male infertility. SEARCH METHODS PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews pertaining to human spermatozoa and mitochondria. Searches were performed using keywords belonging to three groups: 'mitochondria' or 'mitochondrial DNA', 'spermatozoa' or 'sperm' and 'reactive oxygen species' or 'calcium' or 'apoptosis' or signaling pathways'. These keywords were combined with other relevant search phrases. References from these articles were used to obtain additional articles. OUTCOMES Mitochondria are central to the metabolism of spermatozoa and they are implicated in energy production, redox equilibrium and calcium regulation, as well as apoptotic pathways, all of which are necessary for flagellar motility, capacitation, acrosome reaction and gametic fusion. In numerous cases, alterations in one of the aforementioned functions could be linked to a decline in sperm quality and/or infertility. The link between the mitochondrial genome and the quality of spermatozoa appears to be more complex. Although the quantity of mtDNA, and the existence of large-scale deletions therein, are inversely correlated to sperm quality, the effects of mutations seem to be heterogeneous and particularly related to their pathogenicity. WIDER IMPLICATIONS The importance of the role of mitochondria in reproduction, and particularly in gamete quality, has recently emerged following numerous publications. Better understanding of male infertility is of great interest in the current context where a significant decline in sperm quality has been observed.
Collapse
Affiliation(s)
- Magalie Boguenet
- MITOVASC Institute, CNRS 6015, INSERM U1083, Angers University, Angers 49000, France
| | - Pierre-Emmanuel Bouet
- Department of Reproductive Medicine, Angers University Hospital, Angers 49000, France
| | - Andrew Spiers
- Department of Reproductive Medicine, Angers University Hospital, Angers 49000, France
| | - Pascal Reynier
- MITOVASC Institute, CNRS 6015, INSERM U1083, Angers University, Angers 49000, France.,Department of Biochemistry and Genetics, Angers University Hospital, Angers 49000, France
| | - Pascale May-Panloup
- MITOVASC Institute, CNRS 6015, INSERM U1083, Angers University, Angers 49000, France.,Reproductive Biology Unit, Angers University Hospital, Angers 49000, France
| |
Collapse
|
25
|
Li RN, Zhu ZD, Zheng Y, Lv YH, Tian XE, Wu D, Wang YJ, Zeng WX. Metformin improves boar sperm quality via 5'-AMP-activated protein kinase-mediated energy metabolism in vitro. Zool Res 2021; 41:527-538. [PMID: 32738111 PMCID: PMC7475019 DOI: 10.24272/j.issn.2095-8137.2020.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sperm are specialized cells that require adenosine triphosphate (ATP) to support their function. Maintaining sperm energy homeostasis in vitro is vitally important to improve the efficacy of boar sperm preservation. Metformin can activate 5′-AMP-activated protein kinase (AMPK) to improve metabolic flexibility and maintain energy homeostasis. Thus, the aim of the present study was to investigate whether metformin can improve boar sperm quality through AMPK mediation of energy metabolism. Sperm motility parameters, membrane integrity, acrosome integrity, mitochondrial membrane potential (ΔΨm), ATP content, glucose uptake, and lactate efflux were analyzed. Localization and expression levels of AMPK and phospho-Thr172-AMPK (p-AMPK) were also detected by immunofluorescence and western blotting. We found that metformin treatment significantly increased sperm motility parameters, ΔΨm, and ATP content during storage at 17 °C. Moreover, results showed that AMPK was localized at the acrosomal region, connecting piece, and midpiece of sperm and p-AMPK was distributed at the post-acrosomal region, connecting piece, and midpiece. When sperm were incubated with metformin for 4 h at 37 °C, sperm motility parameters, ΔΨm, ATP content, p-AMPK, glucose uptake, and lactate efflux all significantly increased, whereas the addition of Compound C treatment, an inhibitor of AMPK, counteracted these positive effects. Together, our results suggest that metformin promotes AMPK activation, which contributes to the maintenance of energy hemostasis and mitochondrial activity, thereby maintaining boar sperm functionality and improving the efficacy of semen preservation.
Collapse
Affiliation(s)
- Rong-Nan Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhen-Dong Zhu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ying-Hua Lv
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiu-E Tian
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611100, China
| | - Yong-Jun Wang
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| | - Wen-Xian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
26
|
Gimeno-Martos S, Santorromán-Nuez M, Cebrián-Pérez JA, Muiño-Blanco T, Pérez-Pé R, Casao A. Involvement of progesterone and estrogen receptors in the ram sperm acrosome reaction. Domest Anim Endocrinol 2021; 74:106527. [PMID: 32799038 DOI: 10.1016/j.domaniend.2020.106527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022]
Abstract
The steroid hormones 17-β estradiol (E2) and progesterone (P4) can regulate capacitation, hyperactive motility, and the acrosome reaction (AR) during the sperm transit through the female tract. Moreover, exogenous P4 and E2 can induce the AR in ovine spermatozoa, and progesterone receptor (PR) and estrogen receptors (ERα and ERβ) are present in these cells. Thus, to investigate whether the effects both steroid hormones in ram sperm capacitation and AR are receptor-mediated, we incubated them with receptor agonists (tanaproget 1 μM and 5 μM for PR or resveratrol 5 μM and 10 μM for ER) or antagonists (mifepristone 4 μM and 40 μM for PR or tamoxifen 5 μM and 10 μM for ER) in capacitating conditions. The addition of receptor modulators did not affect sperm viability or total motility, although changes in progressive motility were detected. The incubation with both receptor agonists increased the percentage of acrosome-reacted spermatozoa, evaluated by chlortetracycline staining, when compared with the capacitated nontreated sample (Cap-C, P < 0.001). Moreover, the ER agonist resveratrol 10 μM provoked a greater AR than E2 (P < 0.01). Furthermore, the incubation with the receptor antagonists prevented the induction of the AR by P4 or E2, as the antagonists-treated spermatozoa presented a similar CTC pattern to that of Cap-C. In conclusion, these results confirm that P4 and E2 can induce the AR in ram spermatozoa and that this effect is receptor-mediated.
Collapse
Affiliation(s)
- S Gimeno-Martos
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - M Santorromán-Nuez
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - J A Cebrián-Pérez
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - T Muiño-Blanco
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - R Pérez-Pé
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - A Casao
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
27
|
Valipour J, Mojaverrostami S, Abouhamzeh B, Abdollahi M. Protective effects of hesperetin on the quality of sperm, apoptosis, lipid peroxidation, and oxidative stress during the process of cryopreservation: An experimental study. Int J Reprod Biomed 2021; 19:35-46. [PMID: 33554001 PMCID: PMC7851473 DOI: 10.18502/ijrm.v19i1.8178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/24/2020] [Accepted: 06/15/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hesperetin is a bioflavonoid compound, largely used in Chinese traditional medicine and found plenty in citrus fruits. Hesperetin has beneficial effects against different diseases. The sperm cryopreservation process is a common method that is used in infertility laboratories. It has been reported that during the cryopreservation process, the quality of sperm is significantly reduced. OBJECTIVE To investigate the effect of hesperetin on the quality of human spermatozoa during the cryopreservation process. MATERIALS AND METHODS In this experimental study, 22 sperm sample of normozoospermia men who reffered to the infertility department of the Shariati Hospital (Tehran, Iran) Between October and November 2019 were collect and divided in to three groups as: 1) fresh, 2) control (frozen-thawed group without treatment), and 3) treatment group as frozen-thawed samples supplemented with 20 µM hesperetin. Motility, Viability, morphology, Apoptotic-like changes, intracellular H2 O2 , intracellular O2- , and lipid peroxidation (LPO) was measured. RESULTS Hesperetin treatment during the cryopreservation process of human sperm significantly improved the viability, motility, and morphology rates of the spermatozoa after frozen-thawed process in control group (p < 0.01). In addition, it significantly reduced the reactive oxygen species (ROS) level, LPO level and increased the percentage of viable sperm cells with intact plasma membrane (p < 0.01) after frozen-thawed process. CONCLUSION Hesperetin can improve the quality of human sperm and also protect human sperm against reactive oxygen species, LPO, and apoptosis during the cryopreservation-thawing process.
Collapse
Affiliation(s)
- Jamal Valipour
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Beheshteh Abouhamzeh
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Masoumeh Abdollahi
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Effect of sulforaphane on apoptosis, reactive oxygen species and lipids peroxidation of human sperm during cryopreservation. Cryobiology 2020; 99:122-130. [PMID: 33248050 DOI: 10.1016/j.cryobiol.2020.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
Sperm cryopreservation is a common procedure to preserve viable sperm for an indefinite period. This procedure has numerous detrimental effects on sperm function due to increased generation of reactive oxygen species (ROS). During cryopreservation, while ROS increases, antioxidant enzymes level decreases. It has been shown that a relationship exist between lower antioxidant levels and infertility. l-Sulforaphane (SFN) is an isothiocyanate in cruciferous vegetables of the brassica class that has potent protective effects against oxidative stress. The purpose of the present study was to evaluate the effects of SFN supplementation during the freeze-thaw process on different parameters of human spermatozoa which can influence sperm fertilizing ability. Samples were collected from 25 healthy men and each sample was divided into three groups: fresh, control (untreated frozen/thawed samples) and treatment (treated frozen/thawed with SFN) groups. Sperm parameters, ROS production (using flow cytometry), plasma membrane integrity (using flow cytometry), Lipid peroxidation (using ELISA) were evaluated. Our results demonstrated that 5 μM SFN improved all parameters of sperm including viability (P < 0.001), motility, and morphology (P < 0.05) after the freeze-thaw process. Furthermore, SFN reduced the levels of intracellular hydrogen peroxide (P < 0.01) and superoxide anion (P < 0.05). Also, SFN significantly increased the percentage of viable sperm cells with the intact plasma membrane (P < 0.001) and decreased the level of lipid peroxidation after the freeze-thaw process (P < 0.01).Our findings showed that spermatozoa treatment with 5 μM SFN before the freeze-thaw process has protective effects against oxidative stress and could decrease the detrimental effects of this process on sperm quality.
Collapse
|
29
|
Yang W, Wang L, Wang F, Yuan S. Roles of AMP-Activated Protein Kinase (AMPK) in Mammalian Reproduction. Front Cell Dev Biol 2020; 8:593005. [PMID: 33330475 PMCID: PMC7710906 DOI: 10.3389/fcell.2020.593005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022] Open
Abstract
Reproduction is an energy demanding function and only take place in case of sufficient available energy status in mammals. Metabolic diseases such as anorexia nervosa are clinically associated with reduced fertility. AMP-activated protein kinase (AMPK), as a major regulator of cellular energy homeostasis, is activated in limited energy reserves to ensure the orderly progress of various physiological activities. In recent years, mounting evidence shows that AMPK is involved in the regulation of reproductive function through multiple mechanisms. AMPK is likely to be a metabolic sensor integrating central and peripheral signals. In this review, we aim to explore the preclinical studies published in the last decade that investigate the role of AMP-activated protein kinase in the reproductive field, and its role as a target for drug therapy of reproductive system-related diseases. We also emphasized the emerging roles of AMPK in transcriptional regulation of reproduction processes and metabolisms, which are tightly related to the energy state and fertility of an organism.
Collapse
Affiliation(s)
- Weina Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
The Role of Resveratrol in Mammalian Reproduction. Molecules 2020; 25:molecules25194554. [PMID: 33027994 PMCID: PMC7582294 DOI: 10.3390/molecules25194554] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Resveratrol is one of the most investigated natural polyphenolic compounds and is contained in more than 70 types of plants and in red wine. The widespread interest in this polyphenol derives from its antioxidant, anti-inflammatory and anti-aging properties. Several studies have established that resveratrol regulates animal reproduction. However, the mechanisms of action and the potential therapeutic effects are still unclear. This review aims to clarify the role of resveratrol in male and female reproductive functions, with a focus on animals of veterinary interest. In females, resveratrol has been considered as a phytoestrogen due to its capacity to modulate ovarian function and steroidogenesis via sirtuins, SIRT1 in particular. Resveratrol has also been used to enhance aged oocyte quality and as a gametes cryo-protectant with mainly antioxidant and anti-apoptotic effects. In males, resveratrol enhances testes function and spermatogenesis through activation of the AMPK pathway. Furthermore, resveratrol has been supplemented to semen extenders, improving the preservation of sperm quality. In conclusion, resveratrol has potentially beneficial effects for ameliorating ovarian and testes function.
Collapse
|
31
|
Mohammadzadeh M, Khalili MA, Ramezani V, Hamishehkar H, Marvast LD, Mangoli E, Rajabi M, Sales ZA, Talebi AR. Does resveratrol affect prepared sperm parameters and chromatin quality in normozoospermic and asthenozoospermic patients before and after freezing? A lab trial study. Int J Reprod Biomed 2020; 18:755-764. [PMID: 33062921 PMCID: PMC7521164 DOI: 10.18502/ijrm.v13i9.7670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/01/2020] [Accepted: 04/26/2020] [Indexed: 11/24/2022] Open
Abstract
Background Previous studies have examined the effect of resveratrol as a potent antioxidant for free radicals in semen. While, the prepared spermatozoa are more affected by ROS factors due to centrifugation and incubation. Objective To evaluate the RSV's effects on the prepared sperm parameters and chromatin quality in both normozoospermic and asthenozoospermic cases before and after freezing. Materials and Methods The sample of 10 normozoospermic and asthenozoospermic men was prepared through the swim-up method. The groups were then divided into two samples of control and experimental (exposure to 30 µmol/l of RSV) to evaluate and compare the sperm parameters and chromatin quality before and after freezing. Results The motility and viability of spermatozoa were seen to be significantly different before and after freezing separately in the control and treatment samples of the groups (p ≤ 0.001 and p = 0.001, respectively). However, the stated difference between the control and treatment samples of normozoospermic and asthenozoospermic patients were not significant (p > 0.05). In addition, the sperm morphology and chromatin quality were not significantly different between the two samples of each group; nonetheless, chromatin quality of the treated sample was better than that of the control before and after freezing. Conclusion Despite the protective effects of RSV on the semen samples, RSV cannot affect significantly the prepared sperms parameters and chromatin quality in normozoospermic and asthenozoospermic patients.
Collapse
Affiliation(s)
- Masoomeh Mohammadzadeh
- Department of Reproductive Biology, Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ali Khalili
- Department of Reproductive Biology, Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vahid Ramezani
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laleh Dehghan Marvast
- Department of Reproductive Biology, Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Esmat Mangoli
- Department of Reproductive Biology, Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahya Rajabi
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zhima Akhavan Sales
- Department of Immunology, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Reza Talebi
- Department of Reproductive Biology, Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
32
|
Liu G, Pan B, Li S, Ren J, Wang B, Wang C, Su X, Dai Y. Effect of bioactive peptide on ram semen cryopreservation. Cryobiology 2020; 97:153-158. [PMID: 32858005 DOI: 10.1016/j.cryobiol.2020.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
This present study investigated the effect of bioactive peptide (BAPT) (BAPT) on the quality of ram semen during cryopreservation. Ram ejaculates were extended with Tris buffer supplemented with no antioxidants (as control group), 20 μg/mL BAPT (as BAPT20 group), 40 μg/mL BAPT (as BAPT40 group) and 60 μg/mL BAPT (as BAPT60 group). After cryopreservation, sperm quality including motility, vitality, the percentage of hypoosmotic swelling test (HOST)-positive spermatozoa and the percentage of intact acrosomes was assessed. Furthermore, the malondialdehyde (MDA) in seminal plasma and spermatozoa were analyzed, followed by the measurement of superoxide dismutase (SOD), catalase (CAT) and glutathione-peroxidase (GSH-Px) levels in seminal plasma. After in vitro fertilization, the embryonic cleavage rates and development rates of different groups were analyzed to compare the developmental abilities of spermatozoa. The results showed that the post-thaw sperm motility was significantly higher in the BAPT60 group compared to those in the BAPT20, BAPT40 and control groups (P < 0.05). The percentage of live sperms significantly increased from 48.12 ± 2.35% for the BAPT20 group, 55.43 ± 2.16% for the BAPT40 group to 57.53 ± 3.15% for the BAPT60 group. The percentage of HOST-positive spermatozoa was significantly higher in the BAPT60 group than those in BAPT20, BAPT40 and control groups (P < 0.05). The MDA levels in seminal plasma and spermatozoa were significantly reduced with BAPT supplement (P < 0.05). Additionally, the SOD, CAT and GSH-Px levels in the BAPT experimental groups were significantly higher than those of the control group, which further indicated that BAPT significantly inhibit the reactive oxygen species (ROS) production during the cryopreservation of ram semen. Furthermore, the embryonic cleavage rates and development rates of the BAPT40 and BAPT60 groups were significantly increased in comparison with the BAPT20 and control groups (P < 0.05). In conclusion, BAPT improved the ram sperm quality via inhibiting the ROS production during cryopreservation, and could be applied as a promising supplement for ram semen cryopreservation.
Collapse
Affiliation(s)
- Gang Liu
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China; Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Bin Pan
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Shubin Li
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Jingyu Ren
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Biao Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, 22 Zhaojun Road, Hohhot, 010031, Inner Mongolia, China
| | - Chunyu Wang
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Xiulan Su
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China.
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China.
| |
Collapse
|
33
|
Al-Mutary MG, Al-Ghadi MQ, Ammari AA, Al-Himadi AR, Al-Jolimeed AH, Arafah MW, Amran RA, Aleissa MS, Swelum AAA. Effect of different concentrations of resveratrol on the quality and in vitro fertilizing ability of ram semen stored at 5 °C for up to 168 h. Theriogenology 2020; 152:139-146. [PMID: 32408027 DOI: 10.1016/j.theriogenology.2020.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 11/16/2022]
Abstract
The aim of the study was to investigate the effects of different concentrations of resveratrol on head morphology, motility characteristics, oxidative state and in vitro fertility of cooled ram spermatozoa. Pooled semen from three Najdi rams was diluted with Triladyl® having different concentrations of resveratrol, zero (control), 200 μM (45.65 μg/mL) and 400 μM (91.30 μg/mL) resveratrol, then stored at 5 °C for 168 h. The head morphometric, sperm kinematic parameters, Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and in vitro fertilizing capability of ram spermatozoa were evaluated after 24, 72, 120 and 168 h of cooling storage. The total motility (TM) of the sperm with resveratrol at 200 μM and 400 μM was significantly (p ≤ 0.05) higher than that in the control group at 72 and 120 h of cooling storage. On the other hand, the progressive motility (PM) of the sperm with resveratrol at 200 μM and 400 μM was significantly (p ≤ 0.05) higher than that in the control group at 168 h of cooling storage period. After 168 h of cooling storage, significantly higher straightness (STR) was observed in 400 μM group than two other groups and in 200 μM group than the control group. Both resveratrol groups had higher linearity (LIN) than control one at 120 and 168 h of cooling storage. The length, width and area of sperm head were lower (P ≤ 0.05) in the control compared to the other treatment groups after 120 and 168 h of storage. There was a significant increase in superoxide dismutase (SOD) concentration in the two resveratrol groups compared with the control one over the seven days of cooling storage and the same result was found in the reduced glutathione (GSH) concentration at 24, 72, and 168 h of storage. There was a significant (p ≤ 0.05) decrease in malondialdehyde (MDA) concentration in the 400 μM resveratrol group than that in two other groups over the seven days of storage period. Cleavage and blastocyst rates following in vitro fertilization were significantly higher (p ≤ 0.05) in 400 μM resveratrol than other groups at 72 h for cooling storage period. In conclusion, addition of resveratrol in the extender can protect sperm head morphology, improve kinematic parameters and in vitro fertility, and reduce oxidative stress of ram spermatozoa during liquid storage at 5 °C.
Collapse
Affiliation(s)
- Mohsen G Al-Mutary
- Department of Basic Sciences, College of Education, Imam Abdulrahman Bin Faisal University, P.O. Box 2375, Dammam, 14513, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Muath Q Al-Ghadi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Aiman A Ammari
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Thamar University, Yemen
| | - Ahmed R Al-Himadi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammed W Arafah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ramzi A Amran
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Animal Production, College of Agriculture and Veterinary Medicine, Thamar University, Yemen
| | - Mohammed S Aleissa
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Ayman Abdel-Aziz Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt; Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
34
|
Bahmyari R, Zare M, Sharma R, Agarwal A, Halvaei I. The efficacy of antioxidants in sperm parameters and production of reactive oxygen species levels during the freeze-thaw process: A systematic review and meta-analysis. Andrologia 2020; 52:e13514. [PMID: 31967363 DOI: 10.1111/and.13514] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 11/30/2022] Open
Abstract
To investigate the impact of antioxidants in sperm parameters and reduction in reactive oxygen species production during the freeze-thaw process. PubMed, Scopus, Web of Science, Embase and Cochrane central library were systematically searched. Of the 1583 articles, 23 studies were selected for data extraction. Our results show that antioxidants improved sperm progressive motility (standardised mean difference (SMD) = 1; 95% CI: 0.62, 1.38; p < .001) and viability (SMD = 1.20; 95% CI: 0.50, 1.91; p = .001) and reduced sperm DNA fragmentation (SDF) and hydrogen peroxide (H2 O2 ) production, but there was no significant improvement in total sperm motility after thawing. Acetyl-l-carnitine/l-carnitine, melatonin and catalase had a significant positive impact on progressive motility. The role of tempol and melatonin in improving viability was significant compared to other antioxidants. Moreover, a significant reduction in SDF was observed after addition of butylated hydroxytoluene, tempol and vitamin E. However, the prevention of H2 O2 production was significant only after the addition of tempol. Our overall results displayed the positive impact of antioxidants on progressive sperm motility, viability and reduction in SDF and H2 O2 production, but no significant impact of antioxidants on total sperm motility was seen during the freeze-thaw process.
Collapse
Affiliation(s)
- Rezvan Bahmyari
- Department of Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Zare
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rakesh Sharma
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Iman Halvaei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
35
|
Does myoinositol supplement improve sperm parameters and DNA integrity in patients with oligoasthenoteratozoospermia after the freezing-thawing process? Cell Tissue Bank 2019; 21:99-106. [PMID: 31845062 DOI: 10.1007/s10561-019-09801-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
Abstract
Sperm cryopreservation is a routine method in andrology and IVF laboratory. However, the sperm quality and its fertilizing capacity have been decreased during this process. The purpose of this experiment was to determine the role of myoinositol as a supplement in amelioration of total and progressive sperm motility, DNA fragmentation, total antioxidant capacity (TAC), reactive oxygen species (ROS), and lipid peroxidation after the freezing-thawing process on patients with oligoasthenoteratozoospermia (OAT) syndrome. Semen samples obtained from 40 patients were divided into two aliquots and freezed with simple and 2 mg/mL myoinositol (MYO) supplemented freezing media. All samples were thawed and assessed after one month. Semen parameters were analyzed in terms of the motility by CASA, the level of total ROS by fluorimetry, TAC and MDA by colorimetric assay and finally DNA fragmentation by TUNEL assay. Our results clearly showed that MYO could improve total (37.46 vs. 12.91, p < 0.001) and progressive motility (21.92 vs. 6.49, p < 0.001) in experimental group compared to control group. A higher TAC level was observed in the MYO treated group in comparison to control group (1.11 vs. 0.91, p = 0.05). While MYO supplementation could not be effective on ROS level, it reduced DNA fragmentation of sperm after freeze-thaw process (p = 0.01). Therefore, MYO could be a good supplement for sperm freezing to reduce the detrimental effects of freezing process especially on DNA integrity, which is an important factor in the success of ART, in OAT suffered patients.
Collapse
|
36
|
Vatannejad A, Tavilani H, Sadeghi MR, Karimi M, Lakpour N, Amanpour S, Shabani Nashtaei M, Doosti M. Evaluation of the NOX5 protein expression and oxidative stress in sperm from asthenozoospermic men compared to normozoospermic men. J Endocrinol Invest 2019; 42:1181-1189. [PMID: 30963466 DOI: 10.1007/s40618-019-01035-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE NADPH oxidase 5 (NOX5), the main isoform of NOX in spermatozoa, has been recognized as the main active generators of reactive oxygen species (ROS), including superoxide anion (O 2 -. ) and hydrogen peroxide (H2O2). ROS have been shown to play important roles in many physiological and pathological conditions in spermatozoa. The present study aims to investigate the alterations of NOX5 protein expression and oxidative stress (OS) status in asthenozoospermic men compared to normozoospermic men. METHODS Semen samples were collected from 25 asthenozoospermic men and 28 normozoospermic men. In this study, NOX5 protein expression was evaluated by Western blotting. An OS status was evaluated by measuring of ROS (O 2 -. and H2O2), DNA damage and plasma membrane integrity in spermatozoa. RESULTS The protein expression of NOX5 (p < 0.0001) was remarkably higher in asthenozoospermic men in comparison to normozoospermic men. In addition, the percentages of intracellular O 2 -. (p < 0.0001), H2O2 (p < 0.0001) in viable spermatozoa, apoptotic sperm cells with altered plasma membrane (p < 0.001) and DNA damage (p = 0.001) were significantly increased in asthenozoospermic men compared to normozoospermic men. CONCLUSIONS The present study provides evidence that the overexpression of NOX5 protein may induce excessive ROS production and oxidative stress damages to DNA and plasma membrane integrity in asthenozoospermic men.
Collapse
Affiliation(s)
- A Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - H Tavilani
- Urology and Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - M R Sadeghi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - M Karimi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - N Lakpour
- Reproductive Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Pathology, Faculty of Medicine, Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - S Amanpour
- Cancer Biology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - M Shabani Nashtaei
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences Faculty of Medicine, Tehran, Iran
| | - M Doosti
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Lv C, Larbi A, Wu G, Hong Q, Quan G. Improving the quality of cryopreserved goat semen with a commercial bull extender supplemented with resveratrol. Anim Reprod Sci 2019; 208:106127. [PMID: 31405456 DOI: 10.1016/j.anireprosci.2019.106127] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/17/2019] [Accepted: 07/15/2019] [Indexed: 01/22/2023]
Abstract
The purpose of the current study was to evaluate the effects of resveratrol (RSV) on the quality of frozen-thawed goat sperm. Semen samples from four bucks were divided into five aliquots and diluted with a commercial bull semen extender containing: no antioxidant (RSV-0, control), 10 μM RSV (RSV-10), 50 μM RSV (RSV-50), 100 μM RSV (RSV-100) and 250 μM RSV (RSV-250). After thawing, sperm motility, abnormal morphology, membrane and acrosome integrity, mitochondrial activity, phosphatidylserine (PS) distribution, and oxidative stress were evaluated. The results indicated that in comparison with the control, when the concentration of RSV was 10 or 50 μM, the total motility, progressive motility, membrane and acrosome integrity, and mitochondrial activity of post-thaw spermatozoa was greater (P < 0.05). Additionally, the use of extenders containing RSV-10 or RSV-50 resulted in a greater percentage of viable spermatozoa as compared to the other groups (P < 0.05). Importantly, there were more viable spermatozoa (49.61 ± 0.61%) and less non-viable spermatozoa (49.16 ± 1.01%) in the RSV-50 group compared to the other extenders (P < 0.05). Furthermore, the use of the extenders containing RSV-10 and -50 resulted in a reduction in ROS production in frozen-thawed spermatozoa as compared to the control (P < 0.05). There, however, was no difference among extenders for abnormal morphology and PS distribution. In conclusion, supplementation with RSV, at a concentration of 10 or 50 μM in the semen extender, can improve the post-thaw goat sperm quality, which may occur as a consequence of inhibition of ROS generation.
Collapse
Affiliation(s)
- Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong county, Kunming city, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming city, China
| | - Allai Larbi
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong county, Kunming city, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming city, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong county, Kunming city, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming city, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong county, Kunming city, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming city, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong county, Kunming city, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming city, China.
| |
Collapse
|
38
|
Role of AMPK in mammals reproduction: Specific controls and whole-body energy sensing. C R Biol 2018; 342:1-6. [PMID: 30580936 DOI: 10.1016/j.crvi.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/10/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023]
Abstract
AMP-activated protein kinase (AMPK) is a key enzyme involved in linking the energy sensing to metabolic pathways. As such, it plays a central role at the whole-body level to translate endocrine communications into adapted responses aimed either at saving energy when food is scarce or at allocating it to various functions, particularly reproduction, when food is available. AMPK also plays major roles in the energy individual cells use in order to realize their specific functions. This is of course especially true for all cells involved in the reproductive function (gonads, gametes) or in its control (hypothalamus, pituitary). In the present review, I report a survey of the various roles of AMPK functions in reproduction, either directly in reproductive organs, or indirectly in organs controlling reproduction, particularly at hypothalamus level.
Collapse
|
39
|
Using Resveratrol and Epigallocatechin-3-Gallate to Improve Cryopreservation of Stallion Spermatozoa With Low Quality. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2018.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Martin-Hidalgo D, Hurtado de Llera A, Calle-Guisado V, Gonzalez-Fernandez L, Garcia-Marin L, Bragado MJ. AMPK Function in Mammalian Spermatozoa. Int J Mol Sci 2018; 19:ijms19113293. [PMID: 30360525 PMCID: PMC6275045 DOI: 10.3390/ijms19113293] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 01/03/2023] Open
Abstract
AMP-activated protein kinase AMPK regulates cellular energy by controlling metabolism through the inhibition of anabolic pathways and the simultaneous stimulation of catabolic pathways. Given its central regulator role in cell metabolism, AMPK activity and its regulation have been the focus of relevant investigations, although only a few studies have focused on the AMPK function in the control of spermatozoa's ability to fertilize. This review summarizes the known cellular roles of AMPK that have been identified in mammalian spermatozoa. The involvement of AMPK activity is described in terms of the main physiological functions of mature spermatozoa, particularly in the regulation of suitable sperm motility adapted to the fluctuating extracellular medium, maintenance of the integrity of sperm membranes, and the mitochondrial membrane potential. In addition, the intracellular signaling pathways leading to AMPK activation in mammalian spermatozoa are reviewed. We also discuss the role of AMPK in assisted reproduction techniques, particularly during semen cryopreservation and preservation (at 17 °C). Finally, we reinforce the idea of AMPK as a key signaling kinase in spermatozoa that acts as an essential linker/bridge between metabolism energy and sperm's ability to fertilize.
Collapse
Affiliation(s)
- David Martin-Hidalgo
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 40050-313 Porto, Portugal.
| | - Ana Hurtado de Llera
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
- Hormones and Metabolism Research Group, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Violeta Calle-Guisado
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| | - Lauro Gonzalez-Fernandez
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| | - Luis Garcia-Marin
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| | - M Julia Bragado
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| |
Collapse
|
41
|
Hezavehei M, Sharafi M, Kouchesfahani HM, Henkel R, Agarwal A, Esmaeili V, Shahverdi A. Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reprod Biomed Online 2018; 37:327-339. [PMID: 30143329 DOI: 10.1016/j.rbmo.2018.05.012] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 11/19/2022]
Abstract
The cryopreservation of spermatozoa was introduced in the 1960s as a route to fertility preservation. Despite the extensive progress that has been made in this field, the biological and biochemical mechanisms involved in cryopreservation have not been thoroughly elucidated to date. Various factors during the freezing process, including sudden temperature changes, ice formation and osmotic stress, have been proposed as reasons for poor sperm quality post-thaw. Little is known regarding the new aspects of sperm cryobiology, such as epigenetic and proteomic modulation of sperm and trans-generational effects of sperm freezing. This article reviews recent reports on molecular and cellular modifications of spermatozoa during cryopreservation in order to collate the existing understanding in this field. The aim is to discuss current freezing techniques and novel strategies that have been developed for sperm protection against cryo-damage, as well as evaluating the probable effects of sperm freezing on offspring health.
Collapse
Affiliation(s)
- Maryam Hezavehei
- Department of EmbryologyReproductive Biomedicine Research CentreRoyan Institute for Reproductive BiomedicineACECRTehranIran; Department of Animal BiologyFaculty of Biological SciencesKharazmi UniversityTehranIran
| | - Mohsen Sharafi
- Department of Poultry ScienceFaculty of AgricultureTarbiat Modares UniversityTehranIran.
| | | | - Ralf Henkel
- American Centre for Reproductive MedicineCleveland ClinicClevelandUSA
| | - Ashok Agarwal
- Department of Medical BioscienceUniversity of the Western CapeBellvilleSouth Africa
| | - Vahid Esmaeili
- Department of EmbryologyReproductive Biomedicine Research CentreRoyan Institute for Reproductive BiomedicineACECRTehranIran
| | - Abdolhossein Shahverdi
- Department of EmbryologyReproductive Biomedicine Research CentreRoyan Institute for Reproductive BiomedicineACECRTehranIran.
| |
Collapse
|
42
|
Wang Y, Zhang M, Chen ZJ, Du Y. Resveratrol promotes the embryonic development of vitrified mouse oocytes after in vitro fertilization. In Vitro Cell Dev Biol Anim 2018; 54:430-438. [DOI: 10.1007/s11626-018-0262-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/02/2018] [Indexed: 11/30/2022]
|
43
|
Influences of different dietary energy level on sheep testicular development associated with AMPK/ULK1/autophagy pathway. Theriogenology 2017; 108:362-370. [PMID: 29304491 DOI: 10.1016/j.theriogenology.2017.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 11/21/2022]
Abstract
Energy balance is an important feature for spermatozoa production in the testis. The 5'-AMP-activated protein kinase (AMPK) is a sensor of cell energy, has been implicated as a mediator between gonadal function and energy balance. Herein, we intended to determine the physiological effects of AMPK on testicular development in feed energy restricted and compensated pre-pubertal rams. Lambs had restricted feeding for 2 months and then provided compensatory feeding for another 3 months. Feed levels were 100%(control), 15% and 30% of energy restriction (ER) diets, respectively. The results showed that lambs fed the 30% ER diet had significantly lower testicular weight (P < .05) and spermatids number in the seminiferous tubules, but there were no differences between control and 15% ER groups. Meanwhile, 15% ER and 30% ER diets induced testis autophagy and apoptosis through activating AMPK-ULK1(ULK1, Unc-51 like autophagy activating kinase) signal pathway with characterization of increased Beclin-1 and Light chain 3-Ⅱ/Light chain 3-Ⅰ (LC3-II/LC3-I) ratio, up-regulated the ratio of pro-apoptotic Bcl-2-associated X protein (BAX) and anti-apoptotic B-cell lymphoma 2 (Bcl-2), as well as activated AMPK, phosphorylated AMPK(p-AMPK) and ULK1. Furthermore, a compensation of these parameters occurred when the lambs were re-fed with normal energy requirement after restriction. Taken together, dietary energy levels influence testicular development through autophagy and apoptosis interplay mediated by AMPK-ULK1 signal pathway, which also indicates the important role of the actions of AMPK in the testis homeostasis.
Collapse
|
44
|
Zandieh Z, Vatannejad A, Doosti M, Zabihzadeh S, Haddadi M, Bajelan L, Rashidi B, Amanpour S. Comparing reactive oxygen species and DNA fragmentation in semen samples of unexplained infertile and healthy fertile men. Ir J Med Sci 2017; 187:657-662. [DOI: 10.1007/s11845-017-1708-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/24/2017] [Indexed: 11/24/2022]
|
45
|
Cryoprotective effect of resveratrol on DNA damage and crucial human sperm messenger RNAs, possibly through 5′ AMP-activated protein kinase activation. Cell Tissue Bank 2017; 19:87-95. [DOI: 10.1007/s10561-017-9642-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/15/2017] [Indexed: 12/30/2022]
|
46
|
Nguyen TMD. Impact of 5'-amp-activated Protein Kinase on Male Gonad and Spermatozoa Functions. Front Cell Dev Biol 2017; 5:25. [PMID: 28386541 PMCID: PMC5362614 DOI: 10.3389/fcell.2017.00025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
As we already know, the male reproductive system requires less energetic investment than the female one. Nevertheless, energy balance is an important feature for spermatozoa production in the testis and for spermatozoa properties after ejaculation. The 5'-AMP-activated protein kinase, AMPK, is a sensor of cell energy, that regulates many metabolic pathways and that has been recently shown to control spermatozoa quality and functions. It is indeed involved in the regulation of spermatozoa quality through its action on the proliferation of testicular somatic cells (Sertoli and Leydig), on spermatozoa motility and acrosome reaction. It also favors spermatozoa quality through the management of lipid peroxidation and antioxidant enzymes. I review here the most recent data available on the roles of AMPK in vertebrate spermatozoa functions.
Collapse
Affiliation(s)
- Thi Mong Diep Nguyen
- Physiologie de la Reproduction et des Comportements, INRANouzilly, France; Quy Nhon UniversityQuy Nhon, Vietnam
| |
Collapse
|