1
|
Tavares NT, Henrique R, Jerónimo C, Lobo J. Current Role of MicroRNAs in the Diagnosis and Clinical Management of Germ Cell Tumors. Surg Pathol Clin 2025; 18:91-100. [PMID: 39890312 DOI: 10.1016/j.path.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Germ cell tumors (GCTs) are a rare and heterogeneous group of neoplasms arising from primitive germ cells. MicroRNAs are small noncoding RNAs that have emerged as potential cancer biomarkers in the last decade. In particular, miR-371a-3p has shown good diagnostic performance for germ cell neoplasia in situ-derived testicular GCTs in several well-established cohorts and is expected to enter the clinical arena in the near future. GCTs universally exhibit high expression of miR-371-373 and miR-302/367 clusters and low expression of let-7 family miRNAs. Further studies are needed to assess the potential role of these miRNAs as biomarkers of ovarian and extragonadal GCTs.
Collapse
Affiliation(s)
- Nuno Tiago Tavares
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), IPO Porto, Research Center, CI-LAB3, 1st Floor, F Building. Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Doctoral Programme in Biomedical Sciences, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, Porto 4050-513, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), IPO Porto, Research Center, CI-LAB3, 1st Floor, F Building. Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, Porto 4050-513, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), R. Dr. António Bernardino de Almeida, Porto 4200-072, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), IPO Porto, Research Center, CI-LAB3, 1st Floor, F Building. Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, Porto 4050-513, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), IPO Porto, Research Center, CI-LAB3, 1st Floor, F Building. Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, Porto 4050-513, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), R. Dr. António Bernardino de Almeida, Porto 4200-072, Portugal.
| |
Collapse
|
2
|
Loehr AR, Timmerman DM, Liu M, Gillis AJM, Matthews M, Bloom JC, Nicholls PK, Page DC, Miller AD, Looijenga LHJ, Weiss RS. Analysis of a mouse germ cell tumor model establishes pluripotency-associated miRNAs as conserved serum biomarkers for germ cell cancer detection. Sci Rep 2025; 15:4452. [PMID: 39910147 PMCID: PMC11799207 DOI: 10.1038/s41598-025-88554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025] Open
Abstract
Malignant testicular germ cells tumors (TGCTs) are the most common solid cancers in young men. Current TGCT diagnostics include conventional serum protein markers, but these lack the sensitivity and specificity to serve as accurate markers across all TGCT subtypes. MicroRNAs (miRNAs) are small non-coding regulatory RNAs and informative biomarkers for several diseases. In humans, miRNAs of the miR-371-373 cluster are detectable in the serum of patients with malignant TGCTs and outperform existing serum protein markers for both initial diagnosis and subsequent disease monitoring. We previously developed a genetically engineered mouse model featuring malignant mixed TGCTs consisting of pluripotent embryonal carcinoma (EC) and differentiated teratoma that, like the corresponding human malignancies, originate in utero and are highly chemosensitive. Here, we report that miRNAs in the mouse miR-290-295 cluster, homologs of the human miR-371-373 cluster, were detectable in serum from mice with malignant TGCTs but not from tumor-free control mice or mice with benign teratomas. miR-291-293 were expressed and secreted specifically by pluripotent EC cells, and expression was lost following differentiation induced by the drug thioridazine. Notably, miR-291-293 levels were significantly higher in the serum of pregnant dams carrying tumor-bearing fetuses compared to that of control dams. These findings reveal that expression of the miR-290-295 and miR-371-373 clusters in mice and humans, respectively, is a conserved feature of malignant TGCTs, further validating the mouse model as representative of the human disease. These data also highlight the potential of serum miR-371-373 assays to improve patient outcomes through early TGCT detection, possibly even prenatally.
Collapse
Affiliation(s)
- Amanda R Loehr
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | | | - Michelle Liu
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Ad J M Gillis
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Melia Matthews
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | | | | | - David C Page
- Whitehead Institute, Cambridge, MA, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew D Miller
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Leendert H J Looijenga
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Department of Pathology, University Medical Center, Utrecht, The Netherlands.
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| |
Collapse
|
3
|
Bahmyari S, Khatami SH, Taghvimi S, Rezaei Arablouydareh S, Taheri-Anganeh M, Ghasemnejad-Berenji H, Farazmand T, Soltani Fard E, Solati A, Movahedpour A, Ghasemi H. MicroRNAs in Male Fertility. DNA Cell Biol 2024; 43:108-124. [PMID: 38394131 DOI: 10.1089/dna.2023.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Around 50% of all occurrences of infertility are attributable to the male factor, which is a significant global public health concern. There are numerous circumstances that might interfere with spermatogenesis and cause the body to produce abnormal sperm. While evaluating sperm, the count, the speed at which they migrate, and their appearance are the three primary characteristics that are analyzed. MicroRNAs, also known as miRNAs, are present in all physiological fluids and tissues. They participate in both physiological and pathological processes. Researches have demonstrated that the expression of microRNA genes differs in infertile men. These genes regulate spermatogenesis at various stages and in several male reproductive cells. Hence, microRNAs have the potential to act as useful indicators in the diagnosis and treatment of male infertility and other diseases affecting male reproduction. Despite this, additional research is necessary to determine the precise miRNA regulation mechanisms.
Collapse
Affiliation(s)
- Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Taghvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sahar Rezaei Arablouydareh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Tooba Farazmand
- Departmant of Gynecology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
4
|
Shi Z, Yu M, Guo T, Sui Y, Tian Z, Ni X, Chen X, Jiang M, Jiang J, Lu Y, Lin M. MicroRNAs in spermatogenesis dysfunction and male infertility: clinical phenotypes, mechanisms and potential diagnostic biomarkers. Front Endocrinol (Lausanne) 2024; 15:1293368. [PMID: 38449855 PMCID: PMC10916303 DOI: 10.3389/fendo.2024.1293368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
Infertility affects approximately 10-15% of couples worldwide who are attempting to conceive, with male infertility accounting for 50% of infertility cases. Male infertility is related to various factors such as hormone imbalance, urogenital diseases, environmental factors, and genetic factors. Owing to its relationship with genetic factors, male infertility cannot be diagnosed through routine examination in most cases, and is clinically called 'idiopathic male infertility.' Recent studies have provided evidence that microRNAs (miRNAs) are expressed in a cell-or stage-specific manner during spermatogenesis. This review focuses on the role of miRNAs in male infertility and spermatogenesis. Data were collected from published studies that investigated the effects of miRNAs on spermatogenesis, sperm quality and quantity, fertilization, embryo development, and assisted reproductive technology (ART) outcomes. Based on the findings of these studies, we summarize the targets of miRNAs and the resulting functional effects that occur due to changes in miRNA expression at various stages of spermatogenesis, including undifferentiated and differentiating spermatogonia, spermatocytes, spermatids, and Sertoli cells (SCs). In addition, we discuss potential markers for diagnosing male infertility and predicting the varicocele grade, surgical outcomes, ART outcomes, and sperm retrieval rates in patients with non-obstructive azoospermia (NOA).
Collapse
Affiliation(s)
- Ziyan Shi
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Miao Yu
- Science Experiment Center, China Medical University, Shenyang, China
| | - Tingchao Guo
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Yu Sui
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Zhiying Tian
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Xiang Ni
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Xinren Chen
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Miao Jiang
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Jingyi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Yongping Lu
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Meina Lin
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Tavares NT, Lobo J, Bagrodia A. MicroRNAs for detecting occult genitourinary cancer. Curr Opin Urol 2024; 34:20-26. [PMID: 37916954 DOI: 10.1097/mou.0000000000001137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
PURPOSE OF REVIEW Genitourinary (GU) malignancies are a real burden in global health worldwide. Each model has its own clinical challenges, and the early screening and/or detection of occult cancer in follow-up is transversal to all of them. MicroRNAs (miRNAs) have been proposed as minimally invasive liquid biopsy cancer biomarkers, due to their stability and low degradation. RECENT FINDINGS The different GU tumor models are in different stages concerning miRNAs as biomarkers for cancer detection. Testicular germ cell tumors (TGCTs) already have a specific defined target, miR-371a-3p, that has shown high sensitivity and specificity in different clinical settings, and is now in final stages of preanalytical testing before entering the clinic. The other GU malignancies are in a different stage, with many liquid biopsy studies (both in urine and plasma/serum) being currently performed, but there is not an agreeable miRNA or set of miRNAs that is ready to follow the footsteps of miR-371a-3p in TGCTs. SUMMARY Further studies with proper molecular characterization of miRNA profiles of GU malignancies and standardization of sampling, biobanking and formal analysis may aid in the advance and choosing of specific target sets to be used for occult cancer detection.
Collapse
Affiliation(s)
- Nuno Tiago Tavares
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC)
- Doctoral Programme in Biomedical Sciences, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP)
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC)
- Department of Pathology, Portuguese Oncology Institute of Porto/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Aditya Bagrodia
- Department of Urology, University of California - San Diego Health, San Diego, California
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Lobo J, Acosta AM, Netto GJ. Molecular Biomarkers With Potential Clinical Application in Testicular Cancer. Mod Pathol 2023; 36:100307. [PMID: 37611872 DOI: 10.1016/j.modpat.2023.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Testicular germ cell tumors (TGCTs) and sex cord-stromal tumors (SCSTs) are the most common testicular neoplasms. The morphologic spectrum of such tumors is wide, with several histologic subtypes within each group. Testicular tumors often represent a diagnostic challenge, requiring proper identification of their biologic potential for accurate risk stratification and selection of therapy. In the era of precision medicine, molecular biomarkers are increasingly assuming a critical role in the management of patients with cancer. Given the overall rarity of certain types of testicular neoplasms, progress in biomarker research has been relatively slow. However, in recent years, we have witnessed a multitude of important contributions, including both tissue-based and liquid biopsy biomarkers, stemming from important discoveries of tumor pathobiology, accurate histopathological analysis, multi-institutional studies, and genome-wide molecular analyses of specific tumor subtypes. In this review, we provide an overview of the progress in molecular biomarkers of TGCTs and SCSTs, focusing on those with greatest potential for clinical application. In TGCTs, developmental biology has been the key to understanding these tumors and identifying clinically useful biomarkers (from classical serum tumor markers to pluripotency factors and circulating microRNAs of the 371-373 cluster). For SCSTs, studies have focused on tissue biomarkers only, and genome-wide investigations have recently contributed to a better understanding of rare phenotypes and the aggressive biological behavior of some tumors within this nosologic category. Several new biomarkers are moving toward clinical implementation in this field. Therefore, the practicing pathologist should be aware of their strengths and limitations in order to utilize them properly and maximize their clinical benefits.
Collapse
Affiliation(s)
- João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Porto, Portugal; Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca & RISE@CI-IPOP (Health Research Network), Porto, Portugal; Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Andres M Acosta
- Department of Pathology, Indiana University, Indianapolis, Indiana
| | - George J Netto
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
7
|
Loehr AR, Timmerman DM, Liu M, Gillis AJ, Matthews M, Bloom JC, Nicholls PK, Page DC, Miller AD, Looijenga LH, Weiss RS. Analysis of a mouse germ cell tumor model establishes pluripotency-associated miRNAs as conserved serum biomarkers for germ cell cancer detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.09.556995. [PMID: 37745561 PMCID: PMC10515752 DOI: 10.1101/2023.09.09.556995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Malignant testicular germ cells tumors (TGCTs) are the most common solid cancers in young men. Current TGCT diagnostics include conventional serum protein markers, but these lack the sensitivity and specificity to serve as accurate markers across all TGCT subtypes. MicroRNAs (miRNAs) are small non-coding regulatory RNAs and informative biomarkers for several diseases. In humans, miRNAs of the miR-371-373 cluster are detectable in the serum of patients with malignant TGCTs and outperform existing serum protein markers for both initial diagnosis and subsequent disease monitoring. We previously developed a genetically engineered mouse model featuring malignant mixed TGCTs consisting of pluripotent embryonal carcinoma (EC) and differentiated teratoma that, like the corresponding human malignancies, originate in utero and are highly chemosensitive. Here, we report that miRNAs in the mouse miR-290-295 cluster, homologs of the human miR-371-373 cluster, were detectable in serum from mice with malignant TGCTs but not from tumor-free control mice or mice with benign teratomas. miR-291-293 were expressed and secreted specifically by pluripotent EC cells, and expression was lost following differentiation induced by the drug thioridazine. Notably, miR-291-293 levels were significantly higher in the serum of pregnant dams carrying tumor-bearing fetuses compared to that of control dams. These findings reveal that expression of the miR-290-295 and miR-371-373 clusters in mice and humans, respectively, is a conserved feature of malignant TGCTs, further validating the mouse model as representative of the human disease. These data also highlight the potential of serum miR-371-373 assays to improve patient outcomes through early TGCT detection, possibly even prenatally.
Collapse
Affiliation(s)
- Amanda R. Loehr
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | | | - Michelle Liu
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Ad J.M. Gillis
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Melia Matthews
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | | | | | - David C. Page
- Whitehead Institute, Cambridge, MA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Andrew D. Miller
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | | | - Robert S. Weiss
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| |
Collapse
|
8
|
Constâncio V, Tavares NT, Henrique R, Jerónimo C, Lobo J. MiRNA biomarkers in cancers of the male reproductive system: are we approaching clinical application? Andrology 2022; 11:651-667. [PMID: 35930290 DOI: 10.1111/andr.13258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Specific cancer types face specific clinical management challenges. Owing to their stability, robustness and fast, easy, and cost-effective detection, microRNAs (miRNAs) are attractive candidate biomarkers to the clinic. OBJECTIVES Based on a comprehensive review of the relevant literature in the field, we explore the potential of miRNAs as biomarkers to answer relevant clinical dilemmas inherent to cancers of the male reproductive tract (prostate (PCa), testis (TGCTs) and penis (PeCa)) and identify some of the challenges/limitations hampering their widely application. RESULTS AND DISCUSSION We conclude that the use of miRNAs as biomarkers is at different stages for these distinct cancer types. While for TGCTs, miRNA-371a-3p is universally accepted to fill in important clinicals gaps and is moving fast towards clinical implementation, for PCa almost no overlap of miRNAs exists between studies, denoting the absence of a consistent miRNA biomarker, and for PeCa the field of miRNAs has just recently started, with only a few studies attempting to explore their clinical usefulness. CONCLUSION Technological advances influencing miRNA detection and quantification will be instrumental to continue to move forward with implementation of miRNAs in the clinic as biomarkers for non-invasive diagnosis, risk stratification, treatment monitoring and follow-up. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vera Constâncio
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Doctoral Programme in Biomedical Sciences, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - Nuno Tiago Tavares
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| |
Collapse
|
9
|
Ferrara F, Zoupanou S, Primiceri E, Ali Z, Chiriacò MS. Beyond liquid biopsy: Toward non-invasive assays for distanced cancer diagnostics in pandemics. Biosens Bioelectron 2021; 196:113698. [PMID: 34688113 PMCID: PMC8527216 DOI: 10.1016/j.bios.2021.113698] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Liquid biopsy technologies have seen a significant improvement in the last decade, offering the possibility of reliable analysis and diagnosis from several biological fluids. The use of these technologies can overcome the limits of standard clinical methods, related to invasiveness and poor patient compliance. Along with this there are now mature examples of lab-on-chips (LOC) which are available and could be an emerging and breakthrough technology for the present and near-future clinical demands that provide sample treatment, reagent addition and analysis in a sample-in/answer-out approach. The possibility of combining non-invasive liquid biopsy and LOC technologies could greatly assist in the current need for minimizing exposure and transmission risks. The recent and ongoing pandemic outbreak of SARS-CoV-2, indeed, has heavily influenced all aspects of life worldwide. Ordinary tasks have been forced to switch from “in presence” to “distanced”, limiting the possibilities for a large number of activities in all fields of life outside of the home. Unfortunately, one of the settings in which physical distancing has assumed noteworthy consequences is the screening, diagnosis and follow-up of diseases. In this review, we analyse biological fluids that are easily collected without the intervention of specialized personnel and the possibility that they may be used -or not-for innovative diagnostic assays. We consider their advantages and limitations, mainly due to stability and storage and their integration into Point-of-Care diagnostics, demonstrating that technologies in some cases are mature enough to meet current clinical needs.
Collapse
Affiliation(s)
- Francesco Ferrara
- STMicroelectronics s.r.l., via per Monteroni, 73100, Lecce, Italy; CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy.
| | - Sofia Zoupanou
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy; University of Salento, Dept. of Mathematics & Physics E. de Giorgi, Via Arnesano, 73100, Lecce, Italy
| | - Elisabetta Primiceri
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy
| | - Zulfiqur Ali
- University of Teesside, School of Health & Life Sciences, Healthcare Innovation Centre, Middlesbrough, TS1 3BX, Tees Valley, England, UK
| | | |
Collapse
|
10
|
Leão R, Albersen M, Looijenga LHJ, Tandstad T, Kollmannsberger C, Murray MJ, Culine S, Coleman N, Belge G, Hamilton RJ, Dieckmann KP. Circulating MicroRNAs, the Next-Generation Serum Biomarkers in Testicular Germ Cell Tumours: A Systematic Review. Eur Urol 2021; 80:456-466. [PMID: 34175151 DOI: 10.1016/j.eururo.2021.06.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
CONTEXT Clinical management of testicular germ cell tumours (GCTs) is hampered by low sensitivity and specificity of the biomarkers currently in use. Circulating microRNAs (miRs) might offer the potential to address areas of unmet clinical need. OBJECTIVE To systematically evaluate the evidence for clinical applications of serum levels of miR302/367 and miR371-3 in adult testicular GCTs in terms of primary diagnosis, various clinical scenarios, and the costs of clinical implementation. EVIDENCE ACQUISITION We performed a critical review of PubMed/Medline, Embase and the Cochrane Library in January 2021 in accordance with Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement. EVIDENCE SYNTHESIS Thirty-one manuscripts addressed miR performance and potential clinical use in testicular GCT. Of these, 23 evaluated the utility in primary diagnosis, seven in early-stage disease, and 13 in metastatic disease, and two addressed the costs of clinical implementation. Of the various miRs studied, miR-371a-3p appears the most useful and potentially the only one that needs to be assayed, with an area under the receiver operating characteristic curve >0.90, sensitivity of 89-96%, and specificity of >90% for both seminoma and nonseminoma, surpassing the classic serum tumour markers. The miRs studied to date are not elevated in cases with teratoma only. Levels of miR-371a-3p correlate with primary tumour mass, clinical stage, and International Germ Cell Cancer Collaborative Group risk groups. Serial measurements mirror treatment efficacy in all clinical stages. CONCLUSIONS Circulating miRNA levels, particularly of miR-371a-3p, have potential for incorporation in clinical practice and may aid in clinical decision-making in various clinical scenarios in GCT. PATIENT SUMMARY We analysed the current evidence on the usefulness of blood levels of molecules called microRNAs in the management of testicular tumours. The microRNA-371a-3p molecule has better sensitivity and specificity than the markers currently being measured. This new biomarker may soon have a place in clinical practice.
Collapse
Affiliation(s)
- Ricardo Leão
- Department of Urology, Hospital de Braga, Hospitais CUF, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maarten Albersen
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | | | - Torgrim Tandstad
- The Cancer Clinic, St. Olav's University Hospital, Trondheim, Norway
| | - Christian Kollmannsberger
- Department of Medicine, Medical Oncology Division, BC Cancer, Vancouver Centre, University of British Columbia, Vancouver, Canada
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Cambridge, UK; Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, UK
| | - Stephane Culine
- Department of Medical Oncology, Hôpital Saint-Louis, AP-HP, Paris, France; Paris-Diderot University, Paris, France
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, UK; Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Gazanfer Belge
- Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Robert J Hamilton
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, Canada
| | | |
Collapse
|
11
|
Lobo J, Leão R, Jerónimo C, Henrique R. Liquid Biopsies in the Clinical Management of Germ Cell Tumor Patients: State-of-the-Art and Future Directions. Int J Mol Sci 2021; 22:ijms22052654. [PMID: 33800799 PMCID: PMC7961393 DOI: 10.3390/ijms22052654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Liquid biopsies constitute a minimally invasive means of managing cancer patients, entailing early diagnosis, follow-up and prediction of response to therapy. Their use in the germ cell tumor field is invaluable since diagnostic tissue biopsies (which are invasive) are often not performed, and therefore only a presumptive diagnosis can be made, confirmed upon examination of the surgical specimen. Herein, we provide an overall review of the current liquid biopsy-based biomarkers of this disease, including the classical, routinely used serum tumor markers—the promising microRNAs rapidly approaching the introduction into clinical practice—but also cell-free DNA markers (including DNA methylation) and circulating tumor cells. Finally, and importantly, we also explore novel strategies and challenges for liquid biopsy markers and methodologies, providing a critical view of the future directions for liquid biopsy tests in this field, highlighting gaps and unanswered questions.
Collapse
Affiliation(s)
- João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Ricardo Leão
- Faculty of Medicine, University of Coimbra, Rua Larga, 3000-370 Coimbra, Portugal;
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Correspondence: (C.J.); (R.H.); Tel.: +351-22-225084000 (C.J. & R.H.); Fax: +351-22-5084199 (C.J. & R.H.)
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Correspondence: (C.J.); (R.H.); Tel.: +351-22-225084000 (C.J. & R.H.); Fax: +351-22-5084199 (C.J. & R.H.)
| |
Collapse
|
12
|
Kops AL, Hulsker CC, Fiocco M, Zsiros J, Mavinkurve-Groothuis AMC, Looijenga LH, van der Steeg AF, Wijnen MH. Malignant recurrence after mature Sacrococcygeal teratoma: A meta-analysis and review of the literature. Crit Rev Oncol Hematol 2020; 156:103140. [PMID: 33142194 DOI: 10.1016/j.critrevonc.2020.103140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND AIMS Sacrococcygeal teratoma (SCT) is a rare extragonadal germ cell tumour mostly diagnosed during infancy and early childhood. Neonatal SCTs are mostly mature, but can also contain immature and/or malignant components. Recurrence of an SCT alters prognosis, especially when it is malignant, of which its mechanism is not yet fully understood. This study is a review and meta-analysis of the literature on malignant recurrences after an initially mature SCT. METHODS A literature search was performed to identify studies describing children with SCT and presenting specific information on histology of the initial tumour as well as the recurrence. Random effect models for mature recurrence and malignant recurrence after an initially mature SCT were employed to pool study-specific percentages in order to estimate an overall percentage and its associated 95 % confidence intervals (CI). Inverse variance method, which gives more weight to larger studies, was used to pool outcomes for the different studies. RESULTS A total of 22 articles, comprising 1516 patients with SCT, were included in the meta-analysis. The pooled proportions of mature and malignant recurrences after mature SCT were 3 % (95 % CI 1-4 %) and 5% (95 % CI 3-6 %), respectively. Fifty-seven (56 %) of a total of 102 recurrences after resection of an initially mature SCT were malignant, mostly yolk sac tumour (YST). Many recurrences occurred within 1-6 years, however some occurred as long as 20 years after initial diagnosis. CONCLUSIONS A substantial number of recurrences of mature SCT present as a malignant tumour. Overlooking malignant components on initial pathological evaluation and the progression of mature SCT cells to malignant cells may play a role. Treatment of mature SCTs with resection alone requires thorough follow-up of at least 6 years. Future research is needed to determine whether SCTs with malignant microfoci should be treated or followed-up differently from mature or immature SCTs. In addition, the value of serum biomarkers in follow-up after SCT needs to be further evaluated.
Collapse
Affiliation(s)
- Aranka L Kops
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Marta Fiocco
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - József Zsiros
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | | | | - Marc Hw Wijnen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
13
|
Dieckmann KP, Hennig F, Anheuser P, Gehrckens R, Viehweger F, Wülfing C, Belge G. High Expression of microRNA-371a-3p in Cystic Fluid of Post-Chemotherapy Teratoma with Concurrent Normal Serum Levels in Patients with Non-Seminomatous Testicular Germ Cell Tumours. Urol Int 2020; 105:21-26. [PMID: 33049748 DOI: 10.1159/000510760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/03/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND MicroRNA-371a-3p (miR-371), the novel serum biomarker of testicular germ cell tumours (GCTs), is produced by undifferentiated subtypes of GCTs but not by teratoma. Cystic teratoma developing from retroperitoneal metastases of GCT subsequent to chemotherapy had been shown to contain high levels of classical serum tumour markers of GCT in the presence of normal marker levels in serum. To date, no information is available regarding the presence of miR-371 in the cystic fluid of residual teratoma after chemotherapy. METHODS Four patients (age 18-26 years) undergoing retroperitoneal lymph node dissection (RPLND) for cystic residual masses resulting from chemotherapy of bulky retroperitoneal GCT had measurements of miR-371 in both serum and cystic fluid aspirated from surgical specimens. Measurement of the miR was performed with quantitative real-time PCR using miR-30b-5p as reference. Results were tabulated and analysed in a descriptive manner. RESULTS Histologically, all of the surgical specimens involved teratoma only with no evidence of vital undifferentiated GCT tissue. All patients were cured. Prior to RPLND, miR-371 serum levels were not measurable or close to zero in all of the patients. Cystic fluid revealed elevated levels of miR-371 in 3 patients and traces of miR in one. CONCLUSIONS The detection of miR-371 in the cystic fluid of teratoma is somewhat enigmatic since this GCT subtype usually does not express the miR. Two hypotheses may explain the finding: First, miR-371 molecules were released into the cystic fluid by active GCT tissue prior to chemotherapy. High levels were kept after regression of vital GCT tissue because the cystic lumen is without a specific drainage system. Second, teratoma cells lining the interior cyst wall may shed small amounts of miR-371 into the lumen. Because of the lacking drainage system, even small levels may accumulate. The present finding adds to the understanding of the biology of the novel biomarker of GCT.
Collapse
Affiliation(s)
- Klaus-Peter Dieckmann
- Urologische Abteilung, Asklepios Klinik Altona, Hamburg, Germany, .,Klinik für Urologie, Albertinen-Krankenhaus, Hamburg, Germany,
| | - Finja Hennig
- Fachbereich Biologie, Universität Bremen, Bremen, Germany
| | - Petra Anheuser
- Klinik für Urologie, Albertinen-Krankenhaus, Hamburg, Germany
| | - Ralf Gehrckens
- Abteilung Diagnostische Radiologie, Albertinen-Krankenhaus Hamburg, Hamburg, Germany
| | - Florian Viehweger
- Institut für Pathologie, Universitätsklinikum Eppendorf, Hamburg, Germany
| | | | - Gazanfer Belge
- Fachbereich Biologie, Universität Bremen, Bremen, Germany
| |
Collapse
|
14
|
Looijenga LH, Van der Kwast TH, Grignon D, Egevad L, Kristiansen G, Kao CS, Idrees MT. Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers: IV: Current and Future Utilization of Molecular-Genetic Tests for Testicular Germ Cell Tumors. Am J Surg Pathol 2020; 44:e66-e79. [PMID: 32205480 PMCID: PMC7289140 DOI: 10.1097/pas.0000000000001465] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The International Society of Urological Pathology (ISUP) organized a Consultation Conference in March 2019 dealing with applications of molecular pathology in Urogenital Pathology, including testicular tumors (with a focus on germ cell tumors [GCTs]), preceded by a survey among its members to get insight into current practices in testicular germ cell tumor (TGCT) diagnostics and adoption of the ISUP immunohistochemical guidelines published in 2014. On the basis of the premeeting survey, the most commonly used immunomarker panel includes OCT3/4, placental alkaline phosphate, D2-40, SALL4, CD117, and CD30 for GCTs and the documentation of germ cell neoplasia in situ (GCNIS). Molecular testing, specifically 12p copy gain, is informative to distinguish non-GCNIS versus GCNIS related GCTs, and establishing germ cell origin of tumors both in the context of primary and metastatic lesions. Other molecular methodologies currently available but not widely utilized for TGCTs include genome-wide and targeted approaches for specific genetic anomalies, P53 mutations, genomic MDM2 amplification, and detection of the p53 inactivating miR-371a-3p. The latter also holds promise as a serum marker for malignant TGCTs. This manuscript provides an update on the classification of TGCTs, and describes the current and future role of molecular-genetic testing. The following recommendations are made: (1) Presence of GCNIS should be documented in all cases along with extent of spermatogenesis; (2) Immunohistochemical staining is optional in the following scenarios: identification of GCNIS, distinguishing embryonal carcinoma from seminoma, confirming presence of yolk sac tumor and/or choriocarcinoma, and differentiating spermatocytic tumor from potential mimics; (3) Detection of gain of the short arm of chromosome 12 is diagnostic to differentiate between non-GCNIS versus GCNIS related GCTs and supportive to the germ cell origin of both primary and metastatic tumors.
Collapse
Affiliation(s)
| | | | | | - Lars Egevad
- Department of Oncology and Pathology, Karolinska Institutet Sweden, Solna, Sweden
| | - Glen Kristiansen
- Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Chia-Sui Kao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|
15
|
Belge G, Hennig F, Dumlupinar C, Grobelny F, Junker K, Radtke A, Dieckmann KP. Graded expression of microRNA-371a-3p in tumor tissues, contralateral testes, and in serum of patients with testicular germ cell tumor. Oncotarget 2020; 11:1462-1473. [PMID: 32363003 PMCID: PMC7185068 DOI: 10.18632/oncotarget.27565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Serum levels of microRNA-371a-3p represent a specific tumor marker of testicular germ cell tumors (GCTs) but the origin of circulating miR-371a-3p is not finally resolved. The correlation between miR-levels in tissue and serum is unclear.
Results: MiR-levels in GCT tissue are 399-fold higher than in contralateral testicular tissue and 5843-fold higher than in non-testicular tissue. MiR tissue levels correlate with corresponding serum levels (r2 = 0.181). ISH detected miR-371a-3p intracellularly in GCT cells except teratoma. A low expression was also detected in normal testicular germ cells.
Conclusions: Circulating miR-371a-3p is specifically derived from GCT tissue. The miR is present in GCT cells except teratoma. A low expression is also found in normal testicular tissue but not in non-testicular tissue. MiR-371a-3p levels in tissue and serum correlate significantly. This study underscores the usefulness of serum miR-371a-3p as tumor marker of GCT.
Patients and methods: Expression levels of miR-371a-3p were concurrently measured in tissues of GCT, contralateral testes (n = 38), and in serum (n = 36) with real time PCR. For control, 5 healthy testicles and 4 non-testicular tissue samples were examined. MiR-levels were compared using descriptive statistical methods. We also performed in situ hybridization (ISH) of GCT tissue with a probe specific for miR-371a-3p.
Collapse
Affiliation(s)
- Gazanfer Belge
- Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Finja Hennig
- Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Cansu Dumlupinar
- Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | | | - Klaus Junker
- Department of Pathology, Klinikum Bremen-Mitte, Bremen, Germany
| | - Arlo Radtke
- Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | | |
Collapse
|
16
|
Spiller CM, Lobo J, Boellaard WPA, Gillis AJM, Bowles J, Looijenga LHJ. CRIPTO and miR-371a-3p Are Serum Biomarkers of Testicular Germ Cell Tumors and Are Detected in Seminal Plasma from Azoospermic Males. Cancers (Basel) 2020; 12:E760. [PMID: 32210110 PMCID: PMC7140045 DOI: 10.3390/cancers12030760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
miR-371a-3p is currently the most informative reported biomarker for germ cell tumors (GCTs). Another developmental-related biomarker, CRIPTO, is involved in the regulation of pluripotency and germ cell fate commitment. We aimed to assess the value of CRIPTO as a diagnostic and prognostic biomarker of testicular GCTs (TGCTs) and also to assess its presence in seminal plasma samples, compared with miR-371a-3p. In total, 217 and 94 serum/seminal plasma samples were analyzed. CRIPTO was quantified using ELISA and miR-371a-3p using bead-based isolation followed by RT-qPCR. Methylation profiling (EPIC array) for the CRIPTO promoter region was undertaken in 35 TGCT tissues plus four (T)GCT cell lines. Significantly higher CRIPTO concentration was found in sera of non-seminomas compared to controls (p = 0.0297), and in stage II/III disease compared to stage I (p = 0.0052, p = 0.0097). CRIPTO concentration was significantly positively correlated with miR-371a-3p levels in serum (r = 0.16) and seminal plasma (r = 0.40). CRIPTO/miR-371a-3p levels were significantly higher in seminal plasma controls when compared to serum controls (p = 0.0001, p < 0.0001). CRIPTO/miR-371a-3p were detected both in normospermic and azoospermic males, and levels were higher in TGCTs compared to GCNIS-only. We have provided the largest dataset of evaluation of CRIPTO in serum and seminal plasma of GCTs, showing its potential value as a biomarker of the disease.
Collapse
Affiliation(s)
- Cassy M. Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.M.S.); (J.B.)
| | - João Lobo
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (J.L.); (A.J.M.G.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Willem P. A. Boellaard
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Ad J. M. Gillis
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (J.L.); (A.J.M.G.)
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.M.S.); (J.B.)
| | - Leendert H. J. Looijenga
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (J.L.); (A.J.M.G.)
- Department of Pathology, Lab. for Exp. Patho-Oncology (LEPO), Erasmus MC-University Medical Center Rotterdam, Cancer Institute, Be-432A, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
17
|
Daneshmandpour Y, Bahmanpour Z, Hamzeiy H, Mazaheri Moghaddam M, Mazaheri Moghaddam M, Khademi B, Sakhinia E. MicroRNAs association with azoospermia, oligospermia, asthenozoospermia, and teratozoospermia: a systematic review. J Assist Reprod Genet 2020; 37:763-775. [PMID: 32189180 DOI: 10.1007/s10815-019-01674-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/22/2019] [Indexed: 02/08/2023] Open
Abstract
Infertility is a major health problem across the world. One of the main reasons for male infertility are defects in sperm. Semen analysis is the most common test utilized to evaluate male fertility and since it suffers from multiple drawbacks, reproduction scientists have tried to find new molecular markers for detecting sperm defects. MicroRNAs (miRNAs) are small molecules in cells which take part in regulating gene expression. Various studies have confirmed miRNAs to have a role in defining multiple sperm characteristics, including sperm count, motility, and morphology. In this paper, we have systematically reviewed the role of miRNAs in infertile men with sperm defects including azoospermia, oligospermia, asthenozoospermia, and teratozoospermia. Also, we have assembled various bioinformatics tools to come up with a pipeline for predicting novel miRNAs which could possibly participate in sperm count, motility, and morphology. Also, related KEGG and GO terms for predicted miRNAs have been included in order to highlight their role in sperm function. Our study emphasizes the potential role of miRNAs in male infertility and provides a general overview for future studies aiming to find robust molecular markers for this condition.
Collapse
Affiliation(s)
- Yousef Daneshmandpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Bahmanpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Hamzeiy
- Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran.,Genomize Inc., Istanbul, Turkey
| | - Marziyeh Mazaheri Moghaddam
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Madiheh Mazaheri Moghaddam
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Bahareh Khademi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran. .,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Application of miRNAs in the diagnosis and monitoring of testicular germ cell tumours. Nat Rev Urol 2020; 17:201-213. [PMID: 32157202 DOI: 10.1038/s41585-020-0296-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 02/08/2023]
Abstract
Testicular germ cell tumours (TGCTs) are the most frequent cancer type in young men and originate from the common precursor germ cell neoplasia in situ (GCNIS). For decades, clinical management of patients with TGCT has relied on classic serum tumour markers: α-fetoprotein, human chorionic gonadotropin subunit-β and lactate dehydrogenase. In the past 10 years, microRNAs have been shown to outperform classic serum tumour markers in the diagnosis of primary tumours and in follow-up monitoring and prediction of relapse. miR-371a-3p is the most consistent marker and exhibits >90% diagnostic sensitivity and specificity in TGCT. However, miR-371a-3p cannot be used to diagnose GCNIS or mature teratoma. Future efforts must technically standardize the microRNA-based methods internationally and introduce miR-371a-3p as a molecular liquid biopsy-based marker for TGCTs in the clinic.
Collapse
|
19
|
Predicting Gonadal Germ Cell Cancer in People with Disorders of Sex Development; Insights from Developmental Biology. Int J Mol Sci 2019; 20:ijms20205017. [PMID: 31658757 PMCID: PMC6834166 DOI: 10.3390/ijms20205017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 01/03/2023] Open
Abstract
The risk of gonadal germ cell cancer (GGCC) is increased in selective subgroups, amongst others, defined patients with disorders of sex development (DSD). The increased risk is due to the presence of part of the Y chromosome, i.e., GonadoBlastoma on Y chromosome GBY region, as well as anatomical localization and degree of testicularization and maturation of the gonad. The latter specifically relates to the germ cells present being at risk when blocked in an embryonic stage of development. GGCC originates from either germ cell neoplasia in situ (testicular environment) or gonadoblastoma (ovarian-like environment). These precursors are characterized by presence of the markers OCT3/4 (POU5F1), SOX17, NANOG, as well as TSPY, and cKIT and its ligand KITLG. One of the aims is to stratify individuals with an increased risk based on other parameters than histological investigation of a gonadal biopsy. These might include evaluation of defined susceptibility alleles, as identified by Genome Wide Association Studies, and detailed evaluation of the molecular mechanism underlying the DSD in the individual patient, combined with DNA, mRNA, and microRNA profiling of liquid biopsies. This review will discuss the current opportunities as well as limitations of available knowledge in the context of predicting the risk of GGCC in individual patients.
Collapse
|
20
|
Rajpert-De Meyts E. Testicular germ cell cancer: recent developments in biology and clinical management. Andrology 2019; 7:391-393. [DOI: 10.1111/andr.12675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- E. Rajpert-De Meyts
- Department of Growth and Reproduction; Copenhagen University Hospital (Rigshospitalet); Copenhagen Denmark
| |
Collapse
|