1
|
Gao K, Chen Y, Wang P, Chang W, Cao B, Luo L. GATA4: Regulation of expression and functions in goat granulosa cells. Domest Anim Endocrinol 2024; 89:106859. [PMID: 38810369 DOI: 10.1016/j.domaniend.2024.106859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
GATA4 plays a pivotal role in the reproductive processes of mammals. However, the research on GATA4 in goat ovary is limited. This study aimed to study the expression and function of GATA4 in goat ovary. Utilizing real-time PCR and western blot analysis, we studied the expression and regulatory mechanisms of GATA4 in goat ovary and granulosa cells (GCs). We found that GATA4 was expressed in all follicle types in the goat ovary, with significantly higher levels in GCs of larger follicles (>3 mm) compared to those in smaller follicles (<3 mm). Additionally, we demonstrated that human chorionic gonadotrophin (hCG) induced GATA4 mRNA expression via the activation of PKA, MEK, p38 MAPK, PKC, and PI3K pathways in vitro. Our study also showed that hCG suppressed the levels of miR-200b and miR-429, which in turn directly target GATA4, thereby modulating the basal and hCG-induced expression of GATA4. Functionally, we examined the effect of siRNA-mediated GATA4 knockdown on cell proliferation and hormone secretion in goat GCs. Our results revealed that knockdown of GATA4, miR-200b, and miR-429 suppressed cell proliferation. Moreover, knockdown of GATA4 decreased estradiol and progesterone production by inhibiting the promoter activities of CYP11A1, CYP19A1, HSD3B, and StAR. Collectively, our findings suggest a critical involvement of GATA4 in regulating goat GC survival and steroidogenesis.
Collapse
Affiliation(s)
- Kexin Gao
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Yeda Chen
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Peijie Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wenlin Chang
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Liqiong Luo
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China.
| |
Collapse
|
2
|
Differential Response of Transcription Factors to Activated Kinases in Steroidogenic and Non-Steroidogenic Cells. Int J Mol Sci 2022; 23:ijms232113153. [DOI: 10.3390/ijms232113153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Hormone-induced Leydig cell steroidogenesis requires rapid changes in gene expression in response to various hormones, cytokines, and growth factors. These proteins act by binding to their receptors on the surface of Leydig cells leading to activation of multiple intracellular signaling cascades, downstream of which are several kinases, including protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase I (CAMKI), and extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). These kinases participate in hormone-induced steroidogenesis by phosphorylating numerous proteins including transcription factors leading to increased steroidogenic gene expression. How these various kinases and transcription factors come together to appropriately induce steroidogenic gene expression in response to specific stimuli remains poorly understood. In the present work, we compared the effect of PKA, CAMKI and ERK1/2 on the transactivation potential of 15 transcription factors belonging to 5 distinct families on the activity of the Star gene promoter. We not only validated known cooperation between kinases and transcription factors, but we also identified novel cooperations that have not yet been before reported. Some transcription factors were found to respond to all three kinases, whereas others were only activated by one specific kinase. Differential responses were also observed within a family of transcription factors. The diverse response to kinases provides flexibility to ensure proper genomic response of steroidogenic cells to different stimuli.
Collapse
|
3
|
Mehanovic S, Pierre KJ, Viger RS, Tremblay JJ. COUP-TFII interacts and functionally cooperates with GATA4 to regulate Amhr2 transcription in mouse MA-10 Leydig cells. Andrology 2022; 10:1411-1425. [PMID: 35973717 DOI: 10.1111/andr.13266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/19/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Leydig cells produce testosterone and insulin-like 3, two hormones essential for male sex differentiation and reproductive function. The orphan nuclear receptor COUP-TFII and the zinc finger factor GATA4 are two transcription factors involved in Leydig cell differentiation, gene expression and function. OBJECTIVES Several Leydig cell gene promoters contain binding motifs for both GATA factors and nuclear receptors. The goal of present study is to determine whether GATA4 and COUP-TFII cooperate to regulate gene expression in Leydig cells. MATERIALS AND METHODS The transcriptomes from GATA4- and COUP-TFII-depleted MA-10 Leydig cells were analyzed using bioinformatic tools. Functional cooperation between GATA4 and COUP-TFII, and other related family members, was assessed by transient transfections in Leydig (MA-10 and MLTC-1) and fibroblast (CV-1) cell lines on several gene promoters. Recruitment of GATA4 and COUP-TFII to gene promoters was investigated by chromatin immunoprecipitation. Co-immunoprecipitation was used to determine whether GATA4 and COUP-TFII interact in MA-10 Leydig cells. RESULTS Transcriptomic analyses of GATA4- and COUP-TFII-depleted MA-10 Leydig cells revealed 44 commonly regulated genes including the anti-Müllerian hormone receptor (Amhr2) gene. GATA4 and COUP-TFII independently activated the Amhr2 promoter, and their combination led to a stronger activation. A GC-rich element, located in the proximal Amhr2 promoter was found to be essential for GATA4- and COUP-TFII-dependent activation as well as for the COUP-TFII/GATA4 cooperation. COUP-TFII and GATA4 directly interacted in MA-10 Leydig cell extracts. Chromatin immunoprecipitation revealed that GATA4 and COUP-TFII are recruited to the proximal Amhr2 promoter, which contains binding sites for both factors in addition to the GC-rich element. Cooperation between COUP-TFII and GATA6, but not GATA1 and GATA3, was also observed. DISCUSSION AND CONCLUSION Our results establish the importance of a physical and functional cooperation between COUP-TFII/GATA4 in the regulation of gene expression in MA-10 Leydig cells, and more specifically the Amhr2 gene. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Samir Mehanovic
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada
| | - Kenley Joule Pierre
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| |
Collapse
|
4
|
Yao J, Wu XY, Yu Q, Yang SF, Yuan J, Zhang ZQ, Xue JS, Jiang Q, Chen MB, Xue GH, Cao C. The requirement of phosphoenolpyruvate carboxykinase 1 for angiogenesis in vitro and in vivo. SCIENCE ADVANCES 2022; 8:eabn6928. [PMID: 35622925 PMCID: PMC9140980 DOI: 10.1126/sciadv.abn6928] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/12/2022] [Indexed: 05/23/2023]
Abstract
We here examined the potential biological function of phosphoenolpyruvate carboxykinase 1 (PCK1) in angiogenesis. shRNA- or CRISPR-Cas9-induced PCK1 depletion potently inhibited endothelial cell proliferation, migration, sprouting, and tube formation, whereas ectopic PCK1 overexpression exerted opposite activity. In HUVECs, Gαi3 expression and Akt activation were decreased following PCK1 depletion, but were augmented by ectopic PCK1 overexpression. In vivo, retinal expression of PCK1 gradually increased from postnatal day 1 (P1) to P5. The intravitreous injection of endothelial-specific PCK1 shRNA adenovirus at P1 potently inhibited the radial extension of vascular plexus at P5. Conditional endothelial knockdown of PCK1 in adult mouse retina increased vascular leakage and the number of acellular capillaries while decreasing the number of RGCs in murine retinas. In diabetic retinopathy patients, PCK1 mRNA and protein levels were up-regulated in retinal tissues. Together, PCK1 is essential for angiogenesis possibly by mediating Gαi3 expression and Akt activation.
Collapse
Affiliation(s)
- Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Xin-yuan Wu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Qing Yu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Shuo-fei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jin Yuan
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi-qing Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jin-song Xue
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Min-bin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Guan-hua Xue
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Cong Cao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Viger RS, de Mattos K, Tremblay JJ. Insights Into the Roles of GATA Factors in Mammalian Testis Development and the Control of Fetal Testis Gene Expression. Front Endocrinol (Lausanne) 2022; 13:902198. [PMID: 35692407 PMCID: PMC9178088 DOI: 10.3389/fendo.2022.902198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 12/28/2022] Open
Abstract
Defining how genes get turned on and off in a correct spatiotemporal manner is integral to our understanding of the development, differentiation, and function of different cell types in both health and disease. Testis development and subsequent male sex differentiation of the XY fetus are well-orchestrated processes that require an intricate network of cell-cell communication and hormonal signals that must be properly interpreted at the genomic level. Transcription factors are at the forefront for translating these signals into a coordinated genomic response. The GATA family of transcriptional regulators were first described as essential regulators of hematopoietic cell differentiation and heart morphogenesis but are now known to impact the development and function of a multitude of tissues and cell types. The mammalian testis is no exception where GATA factors play essential roles in directing the expression of genes crucial not only for testis differentiation but also testis function in the developing male fetus and later in adulthood. This minireview provides an overview of the current state of knowledge of GATA factors in the male gonad with a particular emphasis on their mechanisms of action in the control of testis development, gene expression in the fetal testis, testicular disease, and XY sex differentiation in humans.
Collapse
Affiliation(s)
- Robert S. Viger
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle and Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec—Université Laval, Quebec City, QC, Canada
| | - Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec—Université Laval, Quebec City, QC, Canada
| | - Jacques J. Tremblay
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle and Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec—Université Laval, Quebec City, QC, Canada
| |
Collapse
|
6
|
Zhang C, Zhao H, Song X, Wang J, Zhao S, Deng H, He L, Zhou X, Yin X, Zhang K, Zhang Y, Wu Z, Chen Q, Du J, Yu D, Zhang S, Deng W. Transcription factor GATA4 drives RNA polymerase III-directed transcription and transformed cell proliferation through a filamin A/GATA4/SP1 pathway. J Biol Chem 2022; 298:101581. [PMID: 35038452 PMCID: PMC8857480 DOI: 10.1016/j.jbc.2022.101581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022] Open
Abstract
RNA polymerase III (pol III) products play fundamental roles in a variety of cellular processes, including protein synthesis and cancer cell proliferation. In addition, dysregulation of pol III-directed transcription closely correlates with tumorigenesis. It is therefore of interest to identify novel pathways or factors governing pol III-directed transcription. Here, we show that transcription factor (TF) GATA binding protein 4 (GATA4) expression in SaOS2 cells was stimulated by the silencing of filamin A (FLNA), a repressor of pol III-directed transcription, suggesting that GATA4 is potentially associated with the regulation of pol III-directed transcription. Indeed, we show that GATA4 expression positively correlates with pol III-mediated transcription and tumor cell proliferation. Mechanistically, we found that GATA4 depletion inhibits the occupancies of the pol III transcription machinery factors at the loci of pol III target genes by reducing expression of both TFIIIB subunit TFIIB-related factor 1 and TFIIIC subunit general transcription factor 3C subunit 2 (GTF3C2). GATA4 has been shown to activate specificity factor 1 (Sp1) gene transcription by binding to the Sp1 gene promoter, and Sp1 has been confirmed to activate pol III gene transcription by directly binding to both Brf1 and Gtf3c2 gene promoters. Thus, the findings from this study suggest that GATA4 links FLNA and Sp1 signaling to form an FLNA/GATA4/Sp1 axis to modulate pol III-directed transcription and transformed cell proliferation. Taken together, these results provide novel insights into the regulatory mechanism of pol III-directed transcription.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Houliang Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Wang
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Liu He
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiangyu Zhou
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaomei Yin
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kewei Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yue Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Zhongyu Wu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Qiyue Chen
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Jiannan Du
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Deen Yu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shihua Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Triptolide impairs glycolysis by suppressing GATA4/Sp1/PFKP signaling axis in mouse Sertoli cells. Toxicol Appl Pharmacol 2021; 425:115606. [PMID: 34087332 DOI: 10.1016/j.taap.2021.115606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 11/23/2022]
Abstract
Triptolide (TP), a primary bioactive ingredient isolated from the traditional Chinese herbal medicine Tripterygium wilfordii Hook. F. (TWHF), has attracted great interest for its therapeutic biological activities in inflammation and autoimmune disease. However, its clinical use is limited by severe testicular toxicity, and the underlying mechanism has not been elucidated. Our preliminary evidence demonstrated that TP disrupted glucose metabolism and caused testicular toxicity. During spermatogenesis, Sertoli cells (SCs) provide lactate as an energy source to germ cells by glycolysis. The transcription factors GATA-binding protein 4 (GATA4) and specificity protein 1 (Sp1) can regulate glycolysis. Based on this evidence, we speculate that TP causes abnormal glycolysis in SCs by influencing the expression of the transcription factors GATA4 and Sp1. The mechanism of TP-induced testicular toxicity was investigated in vitro and in vivo. The data indicated that TP decreased glucose consumption, lactate production, and the mRNA levels of glycolysis-related transporters and enzymes. TP also downregulated the protein expression of the transcription factors GATA4 and Sp1, as well as the glycolytic enzyme phosphofructokinase platelet (PFKP). Phosphorylated GATA4 and nuclear GATA4 protein levels were reduced in a dose- and time-dependent manner after TP incubation. Similar effects were observed in shGata4-treated TM4 cells and BALB/c mice administered 0.4 mg/kg TP for 28 days, and glycolysis was also inhibited. Gata4 knockdown downregulated Sp1 and PFKP expression. Furthermore, the Sp1 inhibitor plicamycin inhibited PFKP protein levels in TM4 cells. In conclusion, TP inhibited GATA4-mediated glycolysis by suppressing Sp1-dependent PFKP expression in SCs and caused testicular toxicity.
Collapse
|