1
|
Pan Y, Yang X, Chen M, Shi K, Lyu Y, Meeson AP, Lash GE. Role of Cancer Side Population Stem Cells in Ovarian Cancer Angiogenesis. Med Princ Pract 2024; 33:403-413. [PMID: 39068919 PMCID: PMC11460956 DOI: 10.1159/000539642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024] Open
Abstract
Ovarian cancer is one of the most common gynecologic malignancies. Recurrence and metastasis often occur after treatment, and it has the highest mortality rate of all gynecological tumors. Cancer stem cells (CSCs) are a small population of cells with the ability of self-renewal, multidirectional differentiation, and infinite proliferation. They have been shown to play an important role in tumor growth, metastasis, drug resistance, and angiogenesis. Ovarian cancer side population (SP) cells, a type of CSC, have been shown to play roles in tumor formation, colony formation, xenograft tumor formation, ascites formation, and tumor metastasis. The rapid progression of tumor angiogenesis is necessary for tumor growth; however, many of the mechanisms driving this process are unclear as is the contribution of CSCs. The aim of this review was to document the current state of knowledge of the molecular mechanism of ovarian cancer stem cells (OCSCs) in regulating tumor angiogenesis.
Collapse
Affiliation(s)
- Yue Pan
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - XueFen Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Miaojuan Chen
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kun Shi
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yuan Lyu
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | | | - Gendie E. Lash
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Third Affiliate Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Cheng K, Seita Y, Whelan EC, Yokomizo R, Hwang YS, Rotolo A, Krantz ID, Ginsberg JP, Kolon TF, Lal P, Luo X, Pierorazio PM, Linn RL, Ryeom S, Sasaki K. Defining the cellular origin of seminoma by transcriptional and epigenetic mapping to the normal human germline. Cell Rep 2024; 43:114323. [PMID: 38861385 DOI: 10.1016/j.celrep.2024.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Aberrant male germline development can lead to the formation of seminoma, a testicular germ cell tumor. Seminomas are biologically similar to primordial germ cells (PGCs) and many bear an isochromosome 12p [i(12p)] with two additional copies of the short arm of chromosome 12. By mapping seminoma transcriptomes and open chromatin landscape onto a normal human male germline trajectory, we find that seminoma resembles premigratory/migratory PGCs; however, it exhibits enhanced germline and pluripotency programs and upregulation of genes involved in apoptosis, angiogenesis, and MAPK/ERK pathways. Using pluripotent stem cell-derived PGCs from Pallister-Killian syndrome patients mosaic for i(12p), we model seminoma and identify gene dosage effects that may contribute to transformation. As murine seminoma models do not exist, our analyses provide critical insights into genetic, cellular, and signaling programs driving seminoma transformation, and the in vitro platform developed herein permits evaluation of additional signals required for seminoma tumorigenesis.
Collapse
Affiliation(s)
- Keren Cheng
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Yasunari Seita
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Eoin C Whelan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Ryo Yokomizo
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Young Sun Hwang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Antonia Rotolo
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Ian D Krantz
- Division of Human Genetics, The Roberts Individualized Medical Genetics Center, The Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Jill P Ginsberg
- Department of Pediatrics, The Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Thomas F Kolon
- Division of Urology, The Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Priti Lal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Xunda Luo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Presbyterian Medical Center, 51 North 39th Street, Philadelphia, PA 19104, USA
| | - Phillip M Pierorazio
- Division of Urology, University of Pennsylvania Presbyterian Medical Center, 3737 Market St. 4th Floor, Philadelphia, PA 19104, USA
| | - Rebecca L Linn
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA; Department of Pathology, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Sandra Ryeom
- Department of Surgery, Columbia University Irving Medical Center, 630 W. 168th Street, P&S 17-409, New York, NY 10032, USA
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Ditonno F, Franco A, Manfredi C, Fasanella D, Abate M, La Rocca R, Crocerossa F, Iossa V, Falagario UG, Cirillo L, Altieri VM, Di Mauro E, Crocetto F, Barone B, Cilio S, Pandolfo SD, Aveta A, Mirone V, Franzese CA, Arcaniolo D, Napolitano L. The Role of miRNA in Testicular Cancer: Current Insights and Future Perspectives. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2033. [PMID: 38004082 PMCID: PMC10672751 DOI: 10.3390/medicina59112033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Despite advancements in the diagnosis and treatment of testicular germ cell tumours (TGTCs), challenges persist in identifying reliable biomarkers for early detection and precise disease management. This narrative review addresses the role of microRNAs (miRNAs) as potential diagnostic tools and therapeutic targets in the treatment of TGCTs. Materials and Methods: Three databases (PubMed®, Web of Science™, and Scopus®) were queried for studies investigating the utility of miRNA as diagnostic tools, assessing their prognostic significance, and evaluating their potential to guide TGCT treatment. Different combinations of the following keywords were used, according to a free-text protocol: "miRNA", "non-coding RNA", "small RNA", "Testicular Cancer", "seminomatous testicular germ cell", "non-seminomatous testicular germ cell". Results: The potential of miRNAs as possible biomarkers for a non-invasive diagnosis of TGCT is appealing. Their integration into the diagnostic pathway for TGCT patients holds the potential to enhance the discriminative power of conventional serum tumour markers (STMs) and could expedite early diagnosis, given that miRNA overexpression was observed in 50% of GCNIS cases. Among miRNAs, miR-371a-3p stands out with the most promising evidence, suggesting its relevance in the primary diagnosis of TGCT, particularly when conventional STMs offer limited value. Indeed, it demonstrated high specificity (90-99%) and sensitivity (84-89%), with good positive predictive value (97.2%) and negative predictive value (82.7%). Furthermore, a direct relationship between miRNA concentration, disease burden, and treatment response exists, regardless of disease stages. The initial evidence of miRNA decrease in response to surgical treatment and systemic chemotherapy has been further supported by more recent results suggesting the potential utility of this tool not only in evaluating treatment response but also in monitoring residual disease and predicting disease relapse. Conclusions: MiRNAs could represent a reliable tool for accurate diagnosis and disease monitoring in the treatment of TGCT, providing more precise tools for early detection and treatment stratification. Nevertheless, well-designed clinical trials and comprehensive long-term data are needed to ensure their translation into effective clinical tools.
Collapse
Affiliation(s)
- Francesco Ditonno
- Department of Urology, Rush University Medical Center, Chicago, IL 60612-3833, USA
- Department of Urology, University of Verona, 37126 Verona, Italy
| | - Antonio Franco
- Department of Urology, Rush University Medical Center, Chicago, IL 60612-3833, USA
- Department of Urology, Sant'Andrea Hospital, La Sapienza University, 00189 Rome, Italy
| | - Celeste Manfredi
- Department of Urology, Rush University Medical Center, Chicago, IL 60612-3833, USA
- Urology Unit, Department of Woman, Child and General and Specialized Surgery, "Luigi Vanvitelli" University, 81100 Naples, Italy
| | - Daniela Fasanella
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Marco Abate
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | - Roberto La Rocca
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | - Fabio Crocerossa
- Department of Urology, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Iossa
- Department of Andrology, "Antonio Cardarelli" Hospital, 80131 Naples, Italy
| | - Ugo Giovanni Falagario
- Department of Urology and Organ Transplantation, University of Foggia, 71122 Foggia, Italy
| | - Luigi Cirillo
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | - Vincenzo Maria Altieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
- Department of Urology, Humanitas Gavazzeni, 24125 Bergamo, Italy
| | - Ernesto Di Mauro
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | - Felice Crocetto
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | - Biagio Barone
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | - Simone Cilio
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | - Savio Domenico Pandolfo
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | - Achille Aveta
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | - Vincenzo Mirone
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | | | - Davide Arcaniolo
- Urology Unit, Department of Woman, Child and General and Specialized Surgery, "Luigi Vanvitelli" University, 81100 Naples, Italy
| | - Luigi Napolitano
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| |
Collapse
|
4
|
Lesko P, Vlkova B, Kalavska K, De Angelis V, Novotna V, Obertova J, Orszaghova Z, Palacka P, Rejlekova K, Sycova-Mila Z, Kollarik B, Aziri R, Pindak D, Mardiak J, Chovanec M, Celec P, Mego M. Prognostic role of plasma vitamin D and its association with disease characteristics in germ cell tumours. Front Oncol 2023; 13:1149432. [PMID: 37114140 PMCID: PMC10126247 DOI: 10.3389/fonc.2023.1149432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Background Testicular cancer is the most common malignancy among young men. Vitamin D has pluripotent effects on cancer pathogenesis and plays a role in the metastatic cascade. The aim of this study is to analyze plasma vitamin D in association with clinico-pathological findings and prognosis in patients with germ-cell tumors (GCTs). Methods This study included 120 newly diagnosed and/or relapsed GCT patients treated from April 2013 to July 2020, for whom plasma was available in the biobank. Blood samples were drawn the 1st chemotherapy cycle as well as before the 2nd cycle. Plasma vitamin D was measured using ELISA and correlated with disease characteristics and the outcome. For survival analysis, the cohort was dichotomized into "low" and "high" based on median vitamin D. Results There was no significant difference in vitamin D plasma levels between healthy donors and GCT patients (p = 0.71). Vitamin D level was not associated with disease characteristics except for brain metastases, where patients with brain metastases had a vitamin D level that was 32% lower compared to patients without brain metastases, p = 0.03. Vitamin D was also associated with response to chemotherapy, with an approximately 32% lower value in patients with an unfavorable response compared to a favorable response, p = 0.02. Moreover, low plasma levels of vitamin D were significantly associated with disease recurrence and inferior progression-free survival (PFS), but not with overall survival (OS) (HR = 3.02, 95% CI 1.36-6.71, p = 0.01 for PFS and HR = 2.06, 95% CI 0.84-5.06, p = 0.14 for OS, respectively). Conclusion Our study suggests the prognostic value of pretreatment vitamin D concentrations in GCT patients. Low plasma vitamin D was associated with an unfavorable response to therapy and disease recurrence. However, it remains to be determined whether the biology of the disease confirms a causative role for low vitamin D and whether its supplementation affects the outcome.
Collapse
Affiliation(s)
- Peter Lesko
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
- *Correspondence: Peter Lesko,
| | - Barbora Vlkova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Katarina Kalavska
- Translation Research Unit, Comenius University, National Cancer Institute, Bratislava, Slovakia
| | - Valentina De Angelis
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Vera Novotna
- 1st Department of Oncology, Faculty of Medicine Comenius University (FMCU) and St. Elizabeth Cancer Institute, Bratislava, Slovakia
| | - Jana Obertova
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Zuzana Orszaghova
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Patrik Palacka
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Katarina Rejlekova
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Zuzana Sycova-Mila
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Boris Kollarik
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Ramadan Aziri
- Department of Surgical Oncology, National Institute for Oncology, Bratislava, Slovakia
| | - Daniel Pindak
- Department of Surgical Oncology, National Institute for Oncology, Bratislava, Slovakia
| | - Jozef Mardiak
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Mego
- Translation Research Unit, Comenius University, National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
5
|
Advancing clinical and translational research in germ cell tumours (GCT): recommendations from the Malignant Germ Cell International Consortium. Br J Cancer 2022; 127:1577-1583. [PMID: 36229581 PMCID: PMC9596690 DOI: 10.1038/s41416-022-02000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023] Open
Abstract
Germ cell tumours (GCTs) are a heterogeneous group of rare neoplasms that present in different anatomical sites and across a wide spectrum of patient ages from birth through to adulthood. Once these strata are applied, cohort numbers become modest, hindering inferences regarding management and therapeutic advances. Moreover, patients with GCTs are treated by different medical professionals including paediatric oncologists, neuro-oncologists, medical oncologists, neurosurgeons, gynaecological oncologists, surgeons, and urologists. Silos of care have thus formed, further hampering knowledge dissemination between specialists. Dedicated biobank specimen collection is therefore critical to foster continuous growth in our understanding of similarities and differences by age, gender, and site, particularly for rare cancers such as GCTs. Here, the Malignant Germ Cell International Consortium provides a framework to create a sustainable, global research infrastructure that facilitates acquisition of tissue and liquid biopsies together with matched clinical data sets that reflect the diversity of GCTs. Such an effort would create an invaluable repository of clinical and biological data which can underpin international collaborations that span professional boundaries, translate into clinical practice, and ultimately impact patient outcomes.
Collapse
|
6
|
Országhová Z, Kalavska K, Mego M, Chovanec M. Overcoming Chemotherapy Resistance in Germ Cell Tumors. Biomedicines 2022; 10:biomedicines10050972. [PMID: 35625709 PMCID: PMC9139090 DOI: 10.3390/biomedicines10050972] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Testicular germ cell tumors (GCTs) are highly curable malignancies. Excellent survival rates in patients with metastatic disease can be attributed to the exceptional sensitivity of GCTs to cisplatin-based chemotherapy. This hypersensitivity is probably related to alterations in the DNA repair of cisplatin-induced DNA damage, and an excessive apoptotic response. However, chemotherapy fails due to the development of cisplatin resistance in a proportion of patients. The molecular basis of this resistance appears to be multifactorial. Tracking the mechanisms of cisplatin resistance in GCTs, multiple molecules have been identified as potential therapeutic targets. A variety of therapeutic agents have been evaluated in preclinical and clinical studies. These include different chemotherapeutics, targeted therapies, such as tyrosine kinase inhibitors, mTOR inhibitors, PARP inhibitors, CDK inhibitors, and anti-CD30 therapy, as well as immune-checkpoint inhibitors, epigenetic therapy, and others. These therapeutics have been used as single agents or in combination with cisplatin. Some of them have shown promising in vitro activity in overcoming cisplatin resistance, but have not been effective in clinical trials in refractory GCT patients. This review provides a summary of current knowledge about the molecular mechanisms of cisplatin sensitivity and resistance in GCTs and outlines possible therapeutic approaches that seek to overcome this chemoresistance.
Collapse
Affiliation(s)
- Zuzana Országhová
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.O.); (M.M.)
| | - Katarina Kalavska
- Translational Research Unit, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia;
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy Sciences, 845 05 Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.O.); (M.M.)
- Translational Research Unit, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia;
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.O.); (M.M.)
- Correspondence:
| |
Collapse
|
7
|
Nicu AT, Medar C, Chifiriuc MC, Gradisteanu Pircalabioru G, Burlibasa L. Epigenetics and Testicular Cancer: Bridging the Gap Between Fundamental Biology and Patient Care. Front Cell Dev Biol 2022; 10:861995. [PMID: 35465311 PMCID: PMC9023878 DOI: 10.3389/fcell.2022.861995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 11/15/2022] Open
Abstract
Testicular cancer is the most common solid tumor affecting young males. Most testicular cancers are testicular germ cell tumors (TGCTs), which are divided into seminomas (SGCTs) and non-seminomatous testicular germ cell tumors (NSGCTs). During their development, primordial germ cells (PGCs) undergo epigenetic modifications and any disturbances in their pattern might lead to cancer development. The present study provides a comprehensive review of the epigenetic mechanisms–DNA methylation, histone post-translational modifications, bivalent marks, non-coding RNA–associated with TGCT susceptibility, initiation, progression and response to chemotherapy. Another important purpose of this review is to highlight the recent investigations regarding the identification and development of epigenetic biomarkers as powerful tools for the diagnostic, prognostic and especially for epigenetic-based therapy.
Collapse
Affiliation(s)
- Alina-Teodora Nicu
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Genetics, University of Bucharest, Bucharest, Romania
| | - Cosmin Medar
- University of Medicine and Pharmacy “Carol Davila”, Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest (ICUB), Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | | | - Liliana Burlibasa
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Genetics, University of Bucharest, Bucharest, Romania
| |
Collapse
|
8
|
Myklebust MP, Søviknes AM, Halvorsen OJ, Thor A, Dahl O, Ræder H. MicroRNAs in Differentiation of Embryoid Bodies and the Teratoma Subtype of Testicular Cancer. Cancer Genomics Proteomics 2022; 19:178-193. [PMID: 35181587 DOI: 10.21873/cgp.20313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Testicular germ cell tumours (TGCTs) are the most frequent tumour type among young, adult men. TGCTs can be efficiently treated, but metastases of the teratoma subtype, for which there are no circulating biomarkers, represent a challenge. MATERIALS AND METHODS Global microRNA expression in teratoma tissue and embryoid bodies was assessed using next-generation sequencing. Levels of microRNAs identified as potential biomarkers were obtained from serum of patients with teratoma and matched healthy men. RESULTS We identified miR-222-5p, miR-200a-5p, miR-196b-3p and miR-454-5p as biomarker candidates from the tumour tissue and embryoid body screening but the expression of these microRNAs was very low in serum and not statistically different between patients and controls. miR-375-3p was highly expressed, being highest in patients with teratoma (p=0.012) but the levels of expression in serum from these patients and healthy controls overlapped. miR-371a-3p was not expressed in serum from patients with pure teratoma, only in patients with mixed tumours. CONCLUSION The microRNA profiles of the teratoma subtype of TGCT and embryoid bodies were obtained and assessed for candidate circulating biomarkers, but none with high sensitivity and specificity for teratoma were identified in our study. We conclude that neither the proposed teratoma marker miR-375-3p nor miR-371a-3p are suitable as circulating teratoma markers.
Collapse
Affiliation(s)
| | - Anne Mette Søviknes
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole Johan Halvorsen
- Gade Laboratory for Pathology, Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - Anna Thor
- Department of Urology and CLINTEC Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Helge Ræder
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
9
|
Yang A, Patterson A, Pavlock T, Chen KS, Gagan J, Hatley ME, Frazier AL, Amatruda JF, Laetsch TW, Rakheja D. Pitfalls in the diagnosis of yolk sac tumor: Lessons from a clinical trial. Pediatr Blood Cancer 2022; 69:e29451. [PMID: 34866303 PMCID: PMC9359435 DOI: 10.1002/pbc.29451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/05/2021] [Accepted: 10/25/2021] [Indexed: 02/03/2023]
Abstract
Though outcomes for patients with recurrent/refractory malignant germ cell tumors (mGCTs) are poor, therapies targeting mTOR and EGFR inhibition have shown promise in vitro. We hypothesized that the combination of sirolimus and erlotinib will show activity in patients with recurrent/refractory mGCTs. Patients were enrolled in a prospective phase II clinical trial; central review of existing pathology specimens was performed. Of the five patients evaluated, two had their diagnoses revised to pancreatic acinar cell carcinoma and alpha-fetoprotein (AFP)-secreting gastric adenocarcinoma, respectively. Although mGCTs are common AFP-secreting neoplasms, recurrence or refractoriness to standard regimens should prompt histologic reevaluation for other diagnoses.
Collapse
Affiliation(s)
- Adeline Yang
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA,Children's Health, Children's Medical Center, Dallas, TX 75235, USA
| | - Alison Patterson
- Children's Health, Children's Medical Center, Dallas, TX 75235, USA
| | - Tara Pavlock
- Children's Health, Children's Medical Center, Dallas, TX 75235, USA
| | - Kenneth S. Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA,Children's Health, Children's Medical Center, Dallas, TX 75235, USA,Pauline Allen Gill Center for Cancer and Blood Disorders, Children's Health Medical Center, Dallas, TX, 75235, USA
| | - Jeffrey Gagan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mark E. Hatley
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - A. Lindsay Frazier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, 02215, USA
| | - James F. Amatruda
- Division of Hematology-Oncology, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Theodore W. Laetsch
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA,Children's Health, Children's Medical Center, Dallas, TX 75235, USA,Pauline Allen Gill Center for Cancer and Blood Disorders, Children's Health Medical Center, Dallas, TX, 75235, USA,Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dinesh Rakheja
- Children's Health, Children's Medical Center, Dallas, TX 75235, USA,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
10
|
Raos D, Abramović I, Tomić M, Vrtarić A, Kuliš T, Ćorić M, Ulamec M, Katušić Bojanac A, Ježek D, Sinčić N. CNV Hotspots in Testicular Seminoma Tissue and Seminal Plasma. Cancers (Basel) 2021; 14:189. [PMID: 35008352 PMCID: PMC8750740 DOI: 10.3390/cancers14010189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Seminoma (SE) is the most frequent type of testicular tumour, affecting predominantly young men. Early detection and diagnosis of SE could significantly improve life quality and reproductive health after diagnosis and treatment. Copy number variation (CNV) has already been associated with various cancers as well as SE. In this study, we selected four genes (MAGEC2, NANOG, RASSF1A, and KITLG) for CNV analysis in genomic DNA (gDNA), which are located on chromosomes susceptible to gains, and whose aberrant expression was already detected in SE. Furthermore, CNV was analysed in cell-free DNA (cfDNA) from seminal plasma. Analysis was performed by droplet digital polymerase chain reaction (ddPCR) on gDNA from SE and nonmalignant testicular tissue. Seminal plasma cfDNA from SE patients before and after surgery was analysed, as well as from healthy volunteers. The CNV hotspot in gDNA from SE tissue was detected for the first time in all analysed genes, and for two genes, NANOG and KITLG it was reflected in cfDNA from seminal plasma. Although clinical value is yet to be determined, presented data emphasize a potential use of CNV as a potential SE biomarker from a liquid biopsy.
Collapse
Affiliation(s)
- Dora Raos
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.R.); (I.A.); (M.Ć.); (A.K.B.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.U.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Irena Abramović
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.R.); (I.A.); (M.Ć.); (A.K.B.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.U.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Miroslav Tomić
- Department of Urology, University Clinical Hospital Centre “Sestre Milosrdnice”, 10000 Zagreb, Croatia;
| | - Alen Vrtarić
- Department of Clinical Chemistry, University Clinical Hospital Centre “Sestre Milosrdnice”, 10000 Zagreb, Croatia;
| | - Tomislav Kuliš
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.U.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Urology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Marijana Ćorić
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.R.); (I.A.); (M.Ć.); (A.K.B.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Pathology and Cytology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Monika Ulamec
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.U.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Ljudevit Jurak Clinical Department of Pathology and Cytology, University Clinical Hospital Centre “Sestre Milosrdnice”, 10000 Zagreb, Croatia
- Department of Pathology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ana Katušić Bojanac
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.R.); (I.A.); (M.Ć.); (A.K.B.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Davor Ježek
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Nino Sinčić
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.R.); (I.A.); (M.Ć.); (A.K.B.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.U.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
11
|
Ottaviano M, Giunta EF, Rescigno P, Pereira Mestre R, Marandino L, Tortora M, Riccio V, Parola S, Casula M, Paliogiannis P, Cossu A, Vogl UM, Bosso D, Rosanova M, Mazzola B, Daniele B, Palmieri G, Palmieri G. The Enigmatic Role of TP53 in Germ Cell Tumours: Are We Missing Something? Int J Mol Sci 2021; 22:7160. [PMID: 34281219 PMCID: PMC8267694 DOI: 10.3390/ijms22137160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
The cure rate of germ cell tumours (GCTs) has significantly increased from the late 1970s since the introduction of cisplatin-based therapy, which to date remains the milestone for GCTs treatment. The exquisite cisplatin sensitivity has been mainly explained by the over-expression in GCTs of wild-type TP53 protein and the lack of TP53 somatic mutations; however, several other mechanisms seem to be involved, many of which remain still elusive. The findings about the role of TP53 in platinum-sensitivity and resistance, as well as the reported evidence of second cancers (SCs) in GCT patients treated only with surgery, suggesting a spectrum of cancer predisposing syndromes, highlight the need for a deepened understanding of the role of TP53 in GCTs. In the following report we explore the complex role of TP53 in GCTs cisplatin-sensitivity and resistance mechanisms, passing through several recent genomic studies, as well as its role in GCT patients with SCs, going through our experience of Center of reference for both GCTs and cancer predisposing syndromes.
Collapse
Affiliation(s)
- Margaret Ottaviano
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (D.B.); (M.R.); (B.D.)
- CRCTR Coordinating Rare Tumors Reference Center of Campania Region, 80131 Naples, Italy; (M.T.); (G.P.)
- IOSI (Oncology Institute of Southern Switzerland), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (R.P.M.); (L.M.); (U.M.V.)
| | - Emilio Francesco Giunta
- Oncology Unit, Department of Precision Medicine, Università Degli Studi Della Campania Luigi Vanvitelli, 80131 Naples, Italy;
| | - Pasquale Rescigno
- Interdisciplinary Group for Translational Research and Clinical Trials, Urological Cancers (GIRT-Uro), Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10160 Turin, Italy;
| | - Ricardo Pereira Mestre
- IOSI (Oncology Institute of Southern Switzerland), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (R.P.M.); (L.M.); (U.M.V.)
| | - Laura Marandino
- IOSI (Oncology Institute of Southern Switzerland), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (R.P.M.); (L.M.); (U.M.V.)
| | - Marianna Tortora
- CRCTR Coordinating Rare Tumors Reference Center of Campania Region, 80131 Naples, Italy; (M.T.); (G.P.)
| | - Vittorio Riccio
- Department of Clinical Medicine and Surgery, Università degli studi di Napoli Federico II, 80131 Naples, Italy; (V.R.); (S.P.)
| | - Sara Parola
- Department of Clinical Medicine and Surgery, Università degli studi di Napoli Federico II, 80131 Naples, Italy; (V.R.); (S.P.)
| | - Milena Casula
- Institute of Genetics and Biomedical Research (IRGB), National Research Council (CNR), 07100 Sassari, Italy; (M.C.); (G.P.)
| | - Panagiotis Paliogiannis
- Departments of Biomedical Sciences and Medical, Surgical, Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.P.); (A.C.)
| | - Antonio Cossu
- Departments of Biomedical Sciences and Medical, Surgical, Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.P.); (A.C.)
| | - Ursula Maria Vogl
- IOSI (Oncology Institute of Southern Switzerland), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (R.P.M.); (L.M.); (U.M.V.)
| | - Davide Bosso
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (D.B.); (M.R.); (B.D.)
| | - Mario Rosanova
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (D.B.); (M.R.); (B.D.)
| | - Brunello Mazzola
- Department of Urology, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland;
| | - Bruno Daniele
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (D.B.); (M.R.); (B.D.)
| | - Giuseppe Palmieri
- Institute of Genetics and Biomedical Research (IRGB), National Research Council (CNR), 07100 Sassari, Italy; (M.C.); (G.P.)
- Departments of Biomedical Sciences and Medical, Surgical, Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.P.); (A.C.)
| | - Giovannella Palmieri
- CRCTR Coordinating Rare Tumors Reference Center of Campania Region, 80131 Naples, Italy; (M.T.); (G.P.)
| |
Collapse
|
12
|
Pinto MT, Cárcano FM, Vieira AGS, Cabral ERM, Lopes LF. Molecular Biology of Pediatric and Adult Male Germ Cell Tumors. Cancers (Basel) 2021; 13:cancers13102349. [PMID: 34068019 PMCID: PMC8152248 DOI: 10.3390/cancers13102349] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Although testicular germ cell tumors (TGCTs) are rare pediatric malignancies, they are the most common malignancies in young adult men. The similarities and differences between TGCTs in adults and children, taking into account the clinic presentation, biology, and molecular changes, are underexplored. In this paper, we aim to provide an overview of the molecular aspects of TGCTs, drawing a parallel between the findings in adult and pediatric groups. Abstract Cancer is a leading cause of death by disease in children and the second most prevalent of all causes in adults. Testicular germ cell tumors (TGCTs) make up 0.5% of pediatric malignancies, 14% of adolescent malignancies, and are the most common of malignancies in young adult men. Although the biology and clinical presentation of adult TGCTs share a significant overlap with those of the pediatric group, molecular evidence suggests that TGCTs in young children likely represent a distinct group compared to older adolescents and adults. The rarity of this cancer among pediatric ages is consistent with our current understanding, and few studies have analyzed and compared the molecular basis in childhood and adult cancers. Here, we review the major similarities and differences in cancer genetics, cytogenetics, epigenetics, and chemotherapy resistance between pediatric and adult TGCTs. Understanding the biological and molecular processes underlying TGCTs may help improve patient outcomes, and fuel further investigation and clinical research in childhood and adult TGCTs.
Collapse
Affiliation(s)
- Mariana Tomazini Pinto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784400, Brazil; (M.T.P.); (F.M.C.); (E.R.M.C.)
- Brazilian Childhood Germ Cell Tumor Study Group, The Brazilian Pediatric Oncology Society (SOBOPE), Barretos 14784400, Brazil;
| | - Flavio Mavignier Cárcano
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784400, Brazil; (M.T.P.); (F.M.C.); (E.R.M.C.)
- Department of Clinical Oncology, Barretos Cancer Hospital, Barretos 14784400, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata—FACISB, Barretos 14785002, Brazil
| | - Ana Glenda Santarosa Vieira
- Brazilian Childhood Germ Cell Tumor Study Group, The Brazilian Pediatric Oncology Society (SOBOPE), Barretos 14784400, Brazil;
- Barretos Children’s Cancer Hospital from Hospital de Amor, Barretos 14784400, Brazil
| | - Eduardo Ramos Martins Cabral
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784400, Brazil; (M.T.P.); (F.M.C.); (E.R.M.C.)
| | - Luiz Fernando Lopes
- Brazilian Childhood Germ Cell Tumor Study Group, The Brazilian Pediatric Oncology Society (SOBOPE), Barretos 14784400, Brazil;
- Barretos Children’s Cancer Hospital from Hospital de Amor, Barretos 14784400, Brazil
- Correspondence: ; Tel.: +55-17-3321-6600
| |
Collapse
|
13
|
Targeting of Deregulated Wnt/β-Catenin Signaling by PRI-724 and LGK974 Inhibitors in Germ Cell Tumor Cell Lines. Int J Mol Sci 2021; 22:ijms22084263. [PMID: 33923996 PMCID: PMC8073733 DOI: 10.3390/ijms22084263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of patients with testicular germ cell tumors (GCTs) can be cured with cisplatin-based chemotherapy. However, for a subset of patients present with cisplatin-refractory disease, which confers a poor prognosis, the treatment options are limited. Novel therapies are therefore urgently needed to improve outcomes in this challenging patient population. It has previously been shown that Wnt/β-catenin signaling is active in GCTs suggesting that its inhibitors LGK974 and PRI-724 may show promise in the management of cisplatin-refractory GCTs. We herein investigated whether LGK-974 and PRI-724 provide a treatment effect in cisplatin-resistant GCT cell lines. Taking a genoproteomic approach and utilizing xenograft models we found the increased level of β-catenin in 2 of 4 cisplatin-resistant (CisR) cell lines (TCam-2 CisR and NCCIT CisR) and the decreased level of β-catenin and cyclin D1 in cisplatin-resistant NTERA-2 CisR cell line. While the effect of treatment with LGK974 was limited or none, the NTERA-2 CisR exhibited the increased sensitivity to PRI-724 in comparison with parental cell line. Furthermore, the pro-apoptotic effect of PRI-724 was documented in all cell lines. Our data strongly suggests that a Wnt/β-catenin signaling is altered in cisplatin-resistant GCT cell lines and the inhibition with PRI-724 is effective in NTERA-2 CisR cells. Further evaluation of Wnt/β-catenin pathway inhibition in GCTs is therefore warranted.
Collapse
|
14
|
Dharia NV, Kugener G, Guenther LM, Malone CF, Durbin AD, Hong AL, Howard TP, Bandopadhayay P, Wechsler CS, Fung I, Warren AC, Dempster JM, Krill-Burger JM, Paolella BR, Moh P, Jha N, Tang A, Montgomery P, Boehm JS, Hahn WC, Roberts CWM, McFarland JM, Tsherniak A, Golub TR, Vazquez F, Stegmaier K. A first-generation pediatric cancer dependency map. Nat Genet 2021; 53:529-538. [PMID: 33753930 PMCID: PMC8049517 DOI: 10.1038/s41588-021-00819-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023]
Abstract
Exciting therapeutic targets are emerging from CRISPR-based screens of high mutational-burden adult cancers. A key question, however, is whether functional genomic approaches will yield new targets in pediatric cancers, known for remarkably few mutations, which often encode proteins considered challenging drug targets. To address this, we created a first-generation pediatric cancer dependency map representing 13 pediatric solid and brain tumor types. Eighty-two pediatric cancer cell lines were subjected to genome-scale CRISPR-Cas9 loss-of-function screening to identify genes required for cell survival. In contrast to the finding that pediatric cancers harbor fewer somatic mutations, we found a similar complexity of genetic dependencies in pediatric cancer cell lines compared to that in adult models. Findings from the pediatric cancer dependency map provide preclinical support for ongoing precision medicine clinical trials. The vulnerabilities observed in pediatric cancers were often distinct from those in adult cancer, indicating that repurposing adult oncology drugs will be insufficient to address childhood cancers.
Collapse
Affiliation(s)
- Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Guillaume Kugener
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Lillian M Guenther
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Clare F Malone
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Adam D Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Oncology, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew L Hong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Emory University and Department of Hematology and Oncology, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Thomas P Howard
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Caroline S Wechsler
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Iris Fung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Phoebe Moh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- University of Maryland, College Park, MD, USA
| | - Nishant Jha
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew Tang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jesse S Boehm
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William C Hahn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Charles W M Roberts
- Department of Oncology, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Todd R Golub
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Francisca Vazquez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Between a Rock and a Hard Place: An Epigenetic-Centric View of Testicular Germ Cell Tumors. Cancers (Basel) 2021; 13:cancers13071506. [PMID: 33805941 PMCID: PMC8036638 DOI: 10.3390/cancers13071506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary This minireview focuses on the role of epigenetics in testicular cancer. A working model is developed that postulates that epigenetic features that drive testicular cancer malignancy also enable these tumors to be cured at a high rate with chemotherapy. Chemoresistance may occur by epigenetic uncoupling of malignancy and chemosensitivity, a scenario that may be amenable to epigenetic-based therapies. Abstract Compared to many common solid tumors, the main genetic drivers of most testicular germ cell tumors (TGCTs) are unknown. Decades of focus on genomic alterations in TGCTs including awareness of a near universal increase in copies of chromosome 12p have failed to uncover exceptional driver genes, especially in genes that can be targeted therapeutically. Thus far, TGCT patients have missed out on the benefits of targeted therapies available to treat most other malignancies. In the past decade there has been a greater appreciation that epigenetics may play an especially prominent role in TGCT etiology, progression, and hypersensitivity to conventional chemotherapy. While genetics undoubtedly plays a role in TGCT biology, this mini-review will focus on the epigenetic “states” or features of testicular cancer, with an emphasis on DNA methylation, histone modifications, and miRNAs associated with TGCT susceptibility, initiation, progression, and response to chemotherapy. In addition, we comment on the current status of epigenetic-based therapy and epigenetic biomarker development for TGCTs. Finally, we suggest a unifying “rock and a hard place” or “differentiate or die” model where the tumorigenicity and curability of TGCTs are both dependent on common but still ill-defined epigenetic states.
Collapse
|
16
|
Oing C, Peters MC, Bremmer F. [What does the oncologist need from the pathologist in testicular cancer?]. DER PATHOLOGE 2020; 41:111-117. [PMID: 33263812 DOI: 10.1007/s00292-020-00872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Testicular type II germ cell tumours (GCTs) are an exemplar of a curable cancer and the most common malignancy in males aged ≤35 years. Even in metastatic stages, about 70% of patients can be cured by cisplatin-based chemotherapy and multimodal treatments. For patients failing platinum-based standard therapy, prognosis is poor and novel biomarkers and therapeutic options are urgently needed. OBJECTIVES Discussion of desired histopathological information to guide urologists' and oncologists' decision making in the treatment of male GCTs. MATERIAL AND METHODS A narrative review of histopathological key features of male GCT tissue samples for clinical decision making. RESULTS Histopathological workup is crucial to identify (i) a GCT origin in cancers of unknown primary based on isochromosome 12p (i(12p)) detection, (ii) the different type II GCT subtypes, and (iii) risk factors, i.e. lymphovascular or rete testis invasion, among others. Proper histopathological diagnosis is indispensable for guideline-endorsed, histology-driven, and risk-adapted treatment decisions, hereby helping to maintain treatment success while reducing the therapeutic burden and potential long-term sequelae of multimodal treatments. For refractory patients failing standard treatment options, prognosis remains poor and, so far, neither predictive or prognostic biomarkers nor novel therapeutic targets have been established. CONCLUSIONS Close interaction and interdisciplinary discussion of histopathologic and radiologic findings and established risk factors including serum tumour markers is crucial for successful treatment including intensified strategies, where necessary, or prevention of overtreatment, where possible.
Collapse
Affiliation(s)
- Christoph Oing
- Klinik für Onkologie, Hämatologie und Stammzelltransplantation mit Abteilung für Pneumologie, Universitätsklinikum Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland. .,Mildred Scheel Nachwuchszentrum, HaTriCS4, Universitäres Cancer Center Hamburg, Universitätsklinikum Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland.
| | - Mia-Carlotta Peters
- Klinik für Onkologie, Hämatologie und Stammzelltransplantation mit Abteilung für Pneumologie, Universitätsklinikum Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland
| | - Felix Bremmer
- Institut für Pathologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Deutschland
| |
Collapse
|