1
|
Kirchner K, Seidel C, Paulsen FO, Sievers B, Bokemeyer C, Lessel D. Further Association of Germline CHEK2 Loss-of-Function Variants with Testicular Germ Cell Tumors. J Clin Med 2023; 12:7065. [PMID: 38002677 PMCID: PMC10672725 DOI: 10.3390/jcm12227065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/17/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) represent the most frequent malignancy in young adult men and have one the highest heritability rates among all cancers. A recent multicenter case-control study identified CHEK2 as the first moderate-penetrance TGCT predisposition gene. Here, we analyzed CHEK2 in 129 TGCT cases unselected for age of onset, histology, clinical outcome, and family history of any cancer, and the frequency of identified variants was compared to findings in 27,173 ancestry-matched cancer-free men. We identified four TGCT cases harboring a P/LP variant in CHEK2 (4/129, 3.10%), which reached statistical significance (p = 0.0191; odds ratio (OR), 4.06; 95% CI, 1.59-10.54) as compared to the control group. Cases with P/LP variants in CHEK2 developed TGCT almost 6 years earlier than individuals with CHEK2 wild-type alleles (5.67 years; 29.5 vs. 35.17). No association was found between CHEK2 status and further clinical and histopathological characteristics, including histological subtypes, the occurrence of aggressive TGCT, family history of TGCT, and family history of any cancer. In addition, we found significant enrichment for the low-penetrance CHEK2 variant p.Ile157Thr (p = 0.0259; odds ratio (OR), 3.69; 95% CI, 1.45-9.55). Thus, we provide further independent evidence of CHEK2 being a moderate-penetrance TGCT predisposition gene.
Collapse
Affiliation(s)
- Kira Kirchner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.K.); (B.S.)
| | - Christoph Seidel
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (C.S.); (F.-O.P.); (C.B.)
| | - Finn-Ole Paulsen
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (C.S.); (F.-O.P.); (C.B.)
| | - Bianca Sievers
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.K.); (B.S.)
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (C.S.); (F.-O.P.); (C.B.)
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.K.); (B.S.)
- Institute of Human Genetics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
2
|
Koenigstein F, Boekstegers F, Wilson JF, Fuentes-Guajardo M, Gonzalez-Jose R, Bedoya G, Bortolini MC, Acuña-Alonzo V, Gallo C, Linares AR, Rothhammer F, Bermejo JL. Inbreeding, native American ancestry and child mortality: Linking human selection and paediatric medicine. Hum Mol Genet 2021; 31:975-984. [PMID: 34673976 PMCID: PMC8947305 DOI: 10.1093/hmg/ddab302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
The children of related parents show increased risk of early mortality. The Native American genome typically exhibits long stretches of homozygosity, and Latin Americans are highly heterogeneous regarding the individual burden of homozygosity, the proportion, and the type of Native American ancestry. We analysed nationwide mortality and genome-wide genotype data from admixed Chileans to investigate the relationship between common causes of child mortality, homozygosity and Native American ancestry. Results from two-stage linear-Poisson regression revealed a strong association between the sum length of runs of homozygosity (SROH) above 1.5 Megabases (Mb) in each genome and mortality due to intracranial non-traumatic haemorrhage of foetus and new-born (5% increased risk of death per Mb in SROH, P = 1 × 10-3) and disorders related to short gestation and low birth weight (P = 3 × 10-4). The major indigenous populations in Chile are Aymara-Quechua in the north of the country, and the Mapuche-Huilliche in the south. The individual proportion of Aymara-Quechua ancestry was associated with an increased risk of death due to anencephaly and similar malformations (P = 4 × 10-5), and the risk of death due to Edwards and Patau trisomy syndromes decreased 4% per 1% Aymara-Quechua ancestry proportion (P = 4 × 10-4) and 5% per 1% Mapuche-Huilliche ancestry proportion (P = 2 × 10-3). The present results suggest that short gestation, low birth weight and intracranial non-traumatic haemorrhage mediate the negative effect of inbreeding on human selection. Independent validation of the identified associations between common causes of child death, homozygosity and fine-scale ancestry proportions may inform paediatric medicine.
Collapse
Affiliation(s)
- Fabienne Koenigstein
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Heidelberg, Germany
| | - Felix Boekstegers
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Heidelberg, Germany
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland.,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Tarapacá University, Arica, Chile
| | - Rolando Gonzalez-Jose
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | - Gabriel Bedoya
- Instituto de Biología, Grupo Genmol, Universidad de Antioquía, Medellín, Colombia
| | - Maria Cátira Bortolini
- Instituto de Biociências, Universidad Federal do Rio Grande do Sul, Puerto Alegre, Brazil
| | | | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Andres Ruiz Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China.,Aix-Marseille Université, CNRS, EFS, ADES, Marseille, France.,Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, UK
| | | | - Justo Lorenzo Bermejo
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
3
|
Global Autozygosity Is Associated with Cancer Risk, Mutational Signature and Prognosis. Cancers (Basel) 2020; 12:cancers12123646. [PMID: 33291726 PMCID: PMC7761949 DOI: 10.3390/cancers12123646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Global autozygosity in the form of runs of homozygosity is associated with various diseases. Heterozygosity ratio, an alternative measure of global autozygosity, is used to assess cancer risk in this study. Our analysis shows strong and consistent associations between heterozygosity ratios and various cancer types. Further analysis reveals the heterozygosity ratio’s potential connections to mutational signatures and cancer prognosis. Abstract Global autozygosity quantifies the genome-wide levels of homozygous and heterozygous variants. It is the signature of non-random reproduction, though it can also be driven by other factors, and has been used to assess risk in various diseases. However, the association between global autozygosity and cancer risk has not been studied. From 4057 cancer subjects and 1668 healthy controls, we found strong associations between global autozygosity and risk in ten different cancer types. For example, the heterozygosity ratio was found to be significantly associated with breast invasive carcinoma in Blacks and with male skin cutaneous melanoma in Caucasians. We also discovered eleven associations between global autozygosity and mutational signatures which can explain a portion of the etiology. Furthermore, four significant associations for heterozygosity ratio were revealed in disease-specific survival analyses. This study demonstrates that global autozygosity is effective for cancer risk assessment.
Collapse
|
4
|
Ni VI, Ivantsov AO, Kotkova MA, Baskina SV, Ponomareva EV, Orlova RV, Topuzov EE, Kryukov KK, Shelekhova KV, Aleksakhina SN, Sokolenko AP, Imyanitov EN. Small fraction of testicular cancer cases may be causatively related to CHEK2 inactivating germ-line mutations: evidence for somatic loss of the remaining CHEK2 allele in the tumor tissue. Fam Cancer 2020; 20:49-53. [PMID: 32451744 DOI: 10.1007/s10689-020-00190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A recent study suggested a role of CHEK2 loss-of-function germ-line pathogenic variants in the predisposition to testicular cancer (TC) (AlDubayan et al. JAMA Oncol 5:514-522, 2019). We attempted to validate this finding relying on the high population frequency of recurrent CHEK2 pathogenic variants in Slavic populations. CHEK2 pathogenic alleles (c.1100delC (p.Thr367Metfs); del5395 [del ex9-10]; IVS2 + 1G > A [c.444 + 1G > A]) were detected in 7/280 (2.5%) TC patients vs. 3/424 (0.7%) healthy men and 6/1007 (0.6%) healthy women [OR 4.0 (95% CI 1.5-11), p = 0.009 for pooled control groups]. Somatic CHEK2 loss-of-heterozygosity (LOH) was detected in 4 out of 6 tumors available for analysis; strikingly all these instances of LOH involved inactivation of the wild-type allele. The CHEK2 c.470T > C (p.Ile157Thr) variant was detected in 21/280 (7.5%) affected vs. 22/424 (5.2%) non-affected men [OR 1.5 (95% CI 0.8-2.7), p = 0.3]. Somatic CHEK2 LOH was revealed only in 6 out of 21 tumors obtained from CHEK2 c.470T > C (p.Ile157Thr) carriers, with the C-allele lost in two cases and T-allele deleted in four tumors. The results of comparison of allele frequencies in TC patients versus population controls coupled with the data on CHEK2 LOH status in tumor tissues support the association of CHEK2 pathogenic variants with TC risk.
Collapse
Affiliation(s)
- Valeriya I Ni
- N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St.-Petersburg, Russia, 197758
| | - Alexandr O Ivantsov
- N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St.-Petersburg, Russia, 197758
- St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia, 194100
| | - Mariya A Kotkova
- N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St.-Petersburg, Russia, 197758
| | - Sofia V Baskina
- N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St.-Petersburg, Russia, 197758
| | | | | | | | | | | | - Svetlana N Aleksakhina
- N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St.-Petersburg, Russia, 197758
| | - Anna P Sokolenko
- N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St.-Petersburg, Russia, 197758
- St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia, 194100
| | - Evgeny N Imyanitov
- N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St.-Petersburg, Russia, 197758.
- St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia, 194100.
- City Cancer Center, St.-Petersburg, Russia, 197758.
- I.I. Mechnikov North-Western Medical University, St.-Petersburg, Russia, 191015.
| |
Collapse
|
5
|
Rajpert-De Meyts E. Testicular germ cell cancer: recent developments in biology and clinical management. Andrology 2019; 7:391-393. [DOI: 10.1111/andr.12675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- E. Rajpert-De Meyts
- Department of Growth and Reproduction; Copenhagen University Hospital (Rigshospitalet); Copenhagen Denmark
| |
Collapse
|