1
|
Ito S, Ueno A, Ueda T, Ogura R, Sako S, Gabata Y, Murashita J, Takahashi H, Ukimura O. A testis-specific lncRNA functions as a post-transcriptional regulator of MDM2 and stimulates apoptosis of testicular germ cell tumor cells. Cell Death Discov 2024; 10:348. [PMID: 39097584 PMCID: PMC11297958 DOI: 10.1038/s41420-024-02119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
Germ cells preferentially induce apoptosis in response to DNA damage to avoid genomic mutations. Apoptosis of germ cells is closely related to cancer development and chemotherapy resistance; however, its regulatory mechanism is unclear. Here, we suggest that testis-specific lncRNA LINC03074 is involved in male germ cell apoptosis by regulating the expression of the proto-oncogene MDM2. LINC03074 is highly expressed in the sperm of healthy adult testes and cancer cells of testes with testicular germ cell tumors (TGCTs). LINC03074 binds to MDM2 mRNA via an Alu element, thereby reducing MDM2 protein levels. LINC03074 stimulates STAU1-mediated nuclear export of MDM2 mRNA by increasing STAU1 binding to MDM2 mRNA in the cell nucleus, thereby promoting PKR-mediated translational repression in the cytoplasm. The induction of apoptosis in TGCT cells and their responsiveness to the anticancer drug cisplatin is enhanced by LINC03074. Notably, LINC03074 increased E2F1 expression without increasing p53, the primary target of MDM2, and upregulated the apoptotic gene p73, the target gene of E2F1. LINC03074-mediated regulation of apoptosis contributes to the responsiveness of TGCTs to anticancer drug-induced DNA damage.
Collapse
Affiliation(s)
- Saya Ito
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan.
| | - Akihisa Ueno
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| | - Takashi Ueda
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| | - Ryota Ogura
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| | - Satoshi Sako
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| | - Yusuke Gabata
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| | - Junki Murashita
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| | - Hikaru Takahashi
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| | - Osamu Ukimura
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| |
Collapse
|
2
|
Estevão-Pereira H, Guimarães-Teixeira C, Flores BCT, Moreira-Silva F, Tavares NT, Guimarães R, Braga I, Maurício J, Henrique R, Jerónimo C, Lobo J. EHMT2/G9a and EZH2: Epimarkers in testicular germ cell tumors. Andrology 2024. [PMID: 38380739 DOI: 10.1111/andr.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Testicular germ cell tumors remain the most frequent solid malignancies in young males. Despite excellent prognosis, the fact that only 60% of patients at diagnosis have elevated serum tumor markers (dependent on stage and histology) and the poor quality of life of patients who develop resistance to chemotherapy cannot be neglected. Consequently, it is mandatory to bring out novel biomarkers. OBJECTIVES The main goal was to evaluate EZH2 and EHMT2/G9a immunoexpression in a well-characterized patients' cohort of primary and metastatic testicular germ cell tumors, seeking associations with clinicopathological features and discovering differential immunoexpression patterns among specific subtypes. MATERIALS AND METHODS First, an in silico analysis of the Cancer Genome Atlas database was performed regarding EZH2 and EHMT2/G9a. Then, immunohistochemistry for EZH2 and EHMT2/G9a was carried out in a cohort of testicular germ cell tumor patients, comprising 155 chemo-naïve primary tumors and 11 chemo-treated metastases. Immunoexpression was evaluated using a digital pathology analysis software. RESULTS Higher EZH2 and EHMT2/G9a expression levels were found in non-seminoma in the in silico analysis, particularly in embryonal carcinoma. Through digital pathology analysis, non-seminomas showed significantly higher EZH2 and EHMT2/G9a immunoexpression, with embryonal carcinoma showing higher expression. Moreover, mixed tumors with 50% or more of embryonal carcinoma component revealed the highest nuclei positivity for both biomarkers. Cisplatin-exposed metastases demonstrated a higher EZH2-positive nuclei and H-score, as well as higher EHMT2/G9a-positive nuclei. DISCUSSION AND CONCLUSION Overall, our data suggest that EZH2 and EHMT2/G9a might be associated with greater aggressiveness and, eventually, involved in the metastatic setting, paving the way for testing targeted therapies.
Collapse
Affiliation(s)
- Helena Estevão-Pereira
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
| | - Catarina Guimarães-Teixeira
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
| | - Bianca C T Flores
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
| | - Filipa Moreira-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
| | - Nuno Tiago Tavares
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
| | - Rita Guimarães
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
| | - Isaac Braga
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Department of Urology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
| | - Joaquina Maurício
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
- Clinical Oncology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Bumbasirevic U, Petrovic M, Zekovic M, Coric V, Milojevic B, Lisicic N, Obucina D, Vasilic N, Bulat P, Zivkovic M, Cekerevac M, Bojanic N, Janicic A. Multifocality in Testicular Cancer: Clinicopathological Correlations and Prognostic Implications. Life (Basel) 2024; 14:257. [PMID: 38398766 PMCID: PMC10890071 DOI: 10.3390/life14020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
There are limited data regarding the significance of multifocality in testicular cancer patients. This study evaluated the relationship between multifocality and clinicopathological features determined at the time of radical orchiectomy. The study involved 280 consecutive patients who underwent radical orchiectomy between 2018 and 2023. Multifocality was defined as a distinct tumor focus characterized by a group of malignant cells > 1 mm, clearly differentiated from the primary tumor mass. Uni- and multivariate logistic regression analyses were employed to investigate the association between multifocality and histopathological parameters along with potential risk factors for clinical stages II + III. Multifocality was identified in 44 (15.7%) patients. Significantly smaller primary tumors were observed in subjects with multifocality (20.0 mm vs. 30.0 mm, p = 0.0001), while those exhibiting monofocality presented a markedly elevated rate of tumors exceeding 4 cm (40.3% vs. 18.2%, p = 0.005). Furthermore, multifocality was associated with a significantly higher rate of primary tumors < 2 cm (52.3% vs. 29.2%, p = 0.003). Univariate logistic regression analysis revealed a substantial decrease in the likelihood of multifocality occurrence in seminoma patients with tumors > 4 cm (OR = 0.38, p = 0.017). Meanwhile, in multivariate logistic regression, multifocality did not emerge as a significant risk factor for clinical stages II + III in either seminoma (p = 0.381) or non-seminoma (p = 0.672) cases. Our study suggests that multifocality holds no substantial prognostic relevance for clinically advanced disease in testicular cancer patients. The findings indicate that multifocality is associated with smaller primary tumors, particularly those measuring less than 2 cm.
Collapse
Affiliation(s)
- Uros Bumbasirevic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (B.M.); (N.L.); (D.O.); (N.V.); (P.B.); (M.Z.); (N.B.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milos Petrovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (B.M.); (N.L.); (D.O.); (N.V.); (P.B.); (M.Z.); (N.B.)
| | - Milica Zekovic
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Vesna Coric
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Center of Excellence for Redox Medicine, 11000 Belgrade, Serbia
| | - Bogomir Milojevic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (B.M.); (N.L.); (D.O.); (N.V.); (P.B.); (M.Z.); (N.B.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nikola Lisicic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (B.M.); (N.L.); (D.O.); (N.V.); (P.B.); (M.Z.); (N.B.)
| | - David Obucina
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (B.M.); (N.L.); (D.O.); (N.V.); (P.B.); (M.Z.); (N.B.)
| | - Nenad Vasilic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (B.M.); (N.L.); (D.O.); (N.V.); (P.B.); (M.Z.); (N.B.)
| | - Petar Bulat
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (B.M.); (N.L.); (D.O.); (N.V.); (P.B.); (M.Z.); (N.B.)
| | - Marko Zivkovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (B.M.); (N.L.); (D.O.); (N.V.); (P.B.); (M.Z.); (N.B.)
| | - Milica Cekerevac
- Department of Pathology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia;
| | - Nebojsa Bojanic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (B.M.); (N.L.); (D.O.); (N.V.); (P.B.); (M.Z.); (N.B.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandar Janicic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (B.M.); (N.L.); (D.O.); (N.V.); (P.B.); (M.Z.); (N.B.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Lobo J, Acosta AM, Netto GJ. Molecular Biomarkers With Potential Clinical Application in Testicular Cancer. Mod Pathol 2023; 36:100307. [PMID: 37611872 DOI: 10.1016/j.modpat.2023.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Testicular germ cell tumors (TGCTs) and sex cord-stromal tumors (SCSTs) are the most common testicular neoplasms. The morphologic spectrum of such tumors is wide, with several histologic subtypes within each group. Testicular tumors often represent a diagnostic challenge, requiring proper identification of their biologic potential for accurate risk stratification and selection of therapy. In the era of precision medicine, molecular biomarkers are increasingly assuming a critical role in the management of patients with cancer. Given the overall rarity of certain types of testicular neoplasms, progress in biomarker research has been relatively slow. However, in recent years, we have witnessed a multitude of important contributions, including both tissue-based and liquid biopsy biomarkers, stemming from important discoveries of tumor pathobiology, accurate histopathological analysis, multi-institutional studies, and genome-wide molecular analyses of specific tumor subtypes. In this review, we provide an overview of the progress in molecular biomarkers of TGCTs and SCSTs, focusing on those with greatest potential for clinical application. In TGCTs, developmental biology has been the key to understanding these tumors and identifying clinically useful biomarkers (from classical serum tumor markers to pluripotency factors and circulating microRNAs of the 371-373 cluster). For SCSTs, studies have focused on tissue biomarkers only, and genome-wide investigations have recently contributed to a better understanding of rare phenotypes and the aggressive biological behavior of some tumors within this nosologic category. Several new biomarkers are moving toward clinical implementation in this field. Therefore, the practicing pathologist should be aware of their strengths and limitations in order to utilize them properly and maximize their clinical benefits.
Collapse
Affiliation(s)
- João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Porto, Portugal; Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca & RISE@CI-IPOP (Health Research Network), Porto, Portugal; Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Andres M Acosta
- Department of Pathology, Indiana University, Indianapolis, Indiana
| | - George J Netto
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
5
|
Liu J, Fang L, Qi S, Song Y, Han L. Occult extracranial malignancy after complete remission of pineal mixed germ cell tumors: a rare case report and literature review. BMC Pediatr 2023; 23:447. [PMID: 37679697 PMCID: PMC10483866 DOI: 10.1186/s12887-023-04213-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/26/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Extracranial metastasis can occur in intracranial germ cell tumors (GCTs), but it is very rare. Recurrence or metastasis of non-germinomatous germ cell tumors (NGGCTs) is often accompanied by elevated tumor markers. Occult extracranial metastases or recurrences with negative markers are often difficult to detect in time, resulting in a very poor prognosis. CASE PRESENTATION A 12-year-old boy was admitted to our institution with dizziness, headache, vomiting, and sleepiness. Magnetic resonance imaging (MRI) showed a pineal mass, accompanied by a significant increase in serum alpha-fetoprotein (AFP). The patient subsequently underwent total removal of the tumor. Pathology revealed that the tumor was a mixed GCT, consisting of mature teratoma, germinoma, and yolk sac tumor. Intracranial GCT achieved complete remission after intensive adjuvant chemotherapy and radiotherapy. Regular follow-up MRI revealed no recurrence of the intracranial tumor and continued monitoring of tumor markers revealed no abnormalities. Eight months later, the patient was readmitted due to progressive abdominal pain. Imaging and physical examination revealed abdominal occupation and lymphatic mass in the neck. He received salvage chemotherapy, anti-PD-1 immunotherapy, and palliative chemotherapy, but still developed multiple organ dysfunction syndromes (MODS) due to tumor progression and eventually died after one month. CONCLUSIONS This profound case suggests that intracranial NGGCTs may develop occult extracranial malignancy, which can be very severe at the time of clinical symptoms and has an extremely poor prognosis. Therefore, in addition to tumor marker monitoring, regular follow-up with extracranial imaging may be warranted to detect extracranial tumors as early as possible, although perhaps not as frequently as with neuroimaging.
Collapse
Affiliation(s)
- Jun Liu
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, 341000, China
| | - Luxiong Fang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Songtao Qi
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ye Song
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, 341000, China.
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Lei Han
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
6
|
Cuevas-Estrada B, Montalvo-Casimiro M, Munguia-Garza P, Ríos-Rodríguez JA, González-Barrios R, Herrera LA. Breaking the Mold: Epigenetics and Genomics Approaches Addressing Novel Treatments and Chemoresponse in TGCT Patients. Int J Mol Sci 2023; 24:ijms24097873. [PMID: 37175579 PMCID: PMC10178517 DOI: 10.3390/ijms24097873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Testicular germ-cell tumors (TGCT) have been widely recognized for their outstanding survival rates, commonly attributed to their high sensitivity to cisplatin-based therapies. Despite this, a subset of patients develops cisplatin resistance, for whom additional therapeutic options are unsuccessful, and ~20% of them will die from disease progression at an early age. Several efforts have been made trying to find the molecular bases of cisplatin resistance. However, this phenomenon is still not fully understood, which has limited the development of efficient biomarkers and precision medicine approaches as an alternative that could improve the clinical outcomes of these patients. With the aim of providing an integrative landscape, we review the most recent genomic and epigenomic features attributed to chemoresponse in TGCT patients, highlighting how we can seek to combat cisplatin resistance through the same mechanisms by which TGCTs are particularly hypersensitive to therapy. In this regard, we explore ongoing treatment directions for resistant TGCT and novel targets to guide future clinical trials. Through our exploration of recent findings, we conclude that epidrugs are promising treatments that could help to restore cisplatin sensitivity in resistant tumors, shedding light on potential avenues for better prognosis for the benefit of the patients.
Collapse
Affiliation(s)
- Berenice Cuevas-Estrada
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Paulina Munguia-Garza
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Juan Alberto Ríos-Rodríguez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| |
Collapse
|
7
|
Skowron MA, Kotthoff M, Bremmer F, Ruhnke K, Parmaksiz F, Richter A, Küffer S, Reuter-Jessen K, Pauls S, Stefanski A, Ströbel P, Stühler K, Nettersheim D. Targeting CLDN6 in germ cell tumors by an antibody-drug-conjugate and studying therapy resistance of yolk-sac tumors to identify and screen specific therapeutic options. Mol Med 2023; 29:40. [PMID: 36991316 PMCID: PMC10053054 DOI: 10.1186/s10020-023-00636-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Being the standard-of-care for four decades, cisplatin-based chemotherapy is highly efficient in treating germ cell tumors (GCT). However, often refractory patients present with a remaining (resistant) yolk-sac tumor (YST(-R)) component, resulting in poor prognosis due to lack of novel treatment options besides chemotherapy and surgery. The aim of this study was to identify novel targets for the treatment of YST by deciphering the molecular mechanisms of therapy resistance. Additionally, we screened the cytotoxic efficacy of a novel antibody-drug-conjugate targeting CLDN6 (CLDN6-ADC), as well as pharmacological inhibitors to target specifically YST. METHODS Protein and mRNA levels of putative targets were measured by flow cytometry, immunohistochemical stainings, mass spectrometry of formalin-fixed paraffin-embedded tissues, phospho-kinase arrays, or qRT-PCR. Cell viability, apoptosis and cell cycle assays of GCT and non-cancerous cells were performed using XTT cell viability assays or Annexin V / propidium iodide flow cytometry, respectively. Druggable genomic alterations of YST(-R) tissues were identified by the TrueSight Oncology 500 assay. RESULTS We demonstrated that treatment with a CLDN6-ADC enhanced apoptosis induction specifically in CLDN6+ GCT cells in comparison with non-cancerous controls. In a cell line-dependent manner, either an accumulation in the G2 / M cell cycle phase or a mitotic catastrophe was observed. Based on mutational and proteome profiling, this study identified drugs targeting the FGF, VGF, PDGF, mTOR, CHEK1, AURKA, or PARP signaling pathways as promising approaches to target YST. Further, we identified factors relevant for MAPK signaling, translational initiation and RNA binding, extracellular matrix-related processes as well as oxidative stress and immune response to be involved in therapy resistance. CONCLUSIONS In summary, this study offers a novel CLDN6-ADC to target GCT. Additionally, this study presents novel pharmacological inhibitors blocking FGF, VGF, PDGF, mTOR, CHEK1, AURKA, or PARP signaling for the treatment of (refractory) YST patients. Finally, this study shed light on the mechanisms of therapy resistance in YST.
Collapse
Affiliation(s)
- Margaretha A Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Mara Kotthoff
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Felix Bremmer
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Katja Ruhnke
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Fatma Parmaksiz
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Annika Richter
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Stella Pauls
- Molecular Proteomics Laboratory, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
8
|
Siegmund SE, Mehra R, Acosta AM. An update on diagnostic tissue-based biomarkers in testicular tumors. Hum Pathol 2023; 133:32-55. [PMID: 35932825 DOI: 10.1016/j.humpath.2022.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022]
Abstract
Testicular cancer is rare overall but comprises the most common solid malignancy diagnosed in young men aged ∼20-40 years. Most testicular neoplasms generally fall into 2 broad categories: germ cell tumors (GCTs; ∼95%) and sex cord-stromal tumors (SCSTs ∼5%). Given the relative rarity of these tumors, diagnostic biomarkers are highly relevant for their diagnosis. Over the past several decades, diagnostic biomarkers have improved dramatically through targeted immunohistochemical and molecular characterization. Despite these recent advances, most markers are not perfectly sensitive or entirely specific. Therefore, they need to be used in combination and interpreted in context. In this review, we summarize tissue-based biomarkers relevant to the pathologist, with a focus on practical diagnostic issues that relate to testicular GCT and SCST.
Collapse
Affiliation(s)
- Stephanie E Siegmund
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Rohit Mehra
- Department of Pathology and Michigan Center for Translational Pathology, University of Michigan Hospital and Health Systems, 1500, East Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Andres M Acosta
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Bleve S, Cursano MC, Casadei C, Schepisi G, Menna C, Urbini M, Gianni C, De Padova S, Filograna A, Gallà V, Rosti G, Barone D, Chovanec M, Mego M, De Giorgi U. Inflammatory Biomarkers for Outcome Prediction in Patients With Metastatic Testicular Cancer. Front Oncol 2022; 12:910087. [PMID: 35756636 PMCID: PMC9226315 DOI: 10.3389/fonc.2022.910087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Germ cell tumors are the most common malignant tumors in male young adults. Platinum-based chemotherapy has dramatically improved the outcome of metastatic germ cell tumor patients and overall cure rates now exceed 80%. The choice of medical treatment can be guided by the prognosis estimation which is an important step during the decision-making process. IGCCCG classification plays a pivotal role in the management of advanced disease. However, histological and clinical parameters are the available factors that condition the prognosis, but they do not reflect the tumor's molecular and pathological features and do not predict who will respond to chemotherapy. After first-line chemotherapy 20%-30% of patients relapse and for these patients, the issue of prognostic factors is far more complex. Validated biomarkers and a molecular selection of patients that reflect the pathogenesis are highly needed. The association between cancer-related systemic inflammation, tumorigenesis, and cancer progression has been demonstrated. In the last years, several studies have shown the prognostic utility of immune-inflammation indexes in different tumor types. This review analyzed the prognostic impact of inflammatory markers retrieved from routine blood draws in GCT patients.
Collapse
Affiliation(s)
- Sara Bleve
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Maria Concetta Cursano
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Casadei
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giuseppe Schepisi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Cecilia Menna
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Milena Urbini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Silvia De Padova
- Psycho-Oncology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alessia Filograna
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Valentina Gallà
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Rosti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Domenico Barone
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michal Chovanec
- 2nd Department of Oncology, Comenius University, Faculty of Medicine, National Cancer Institute, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Comenius University, Faculty of Medicine, National Cancer Institute, Bratislava, Slovakia
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
10
|
Lourenço BC, Guimarães-Teixeira C, Flores BCT, Miranda-Gonçalves V, Guimarães R, Cantante M, Lopes P, Braga I, Maurício J, Jerónimo C, Henrique R, Lobo J. Ki67 and LSD1 Expression in Testicular Germ Cell Tumors Is Not Associated with Patient Outcome: Investigation Using a Digital Pathology Algorithm. Life (Basel) 2022; 12:life12020264. [PMID: 35207551 PMCID: PMC8875543 DOI: 10.3390/life12020264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/27/2022] Open
Abstract
TGCTs represent a model of curable disease afflicting especially young men. Defining tumor biological characteristics is crucial to increase current knowledge and tailor the best clinical management. Ki67, a potential prognostic marker, still exhibits heterogenous associations with patient outcomes, thus bringing the need of corroboration with larger cohorts in clinical practice. LSD1, an epigenetic enzyme, represents a future target for epigenetic drugs that may lower treatment-associated morbidity. This study aimed to assess Ki67/LSD1 immunoexpression across all TGCT histological subtypes and correlate it with clinicopathological features. Results were compared with an in silico analysis of the TCGA database. Immunohistochemistry for Ki67 and LSD1 was carried out in a cohort of 157 TGCT tumor samples and assessed using a digital pathology algorithm. LSD1 protein expression was explored in TGCT cell lines, including ATRA-differentiated clones. There was a significant positive correlation between Ki67 and LSD1 H-scores (rs = 0.182, p = 0.037). Ki67 positivity percentage and H-score were significantly higher in non-seminomas (p = 0.0316 and 0.0113, respectively). Expression was not significantly different according to clinicopathological features, including stage, IGCCCG prognosis-based system, or relapse/progression-free survival, which was corroborated by in silico analysis. Our study, making use of digital image analysis, does not confirm the utility of these biomarkers in a daily practice cohort. Although not affecting patient outcome in our cohort, LSD1 is expressed overall in TGCTs, suggesting sensitivity to LSD1 inhibitors.
Collapse
Affiliation(s)
- Beatriz Chaves Lourenço
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072 Porto, Portugal; (B.C.L.); (R.G.); (M.C.); (P.L.)
| | - Catarina Guimarães-Teixeira
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (C.G.-T.); (B.C.T.F.); (V.M.-G.); (C.J.)
| | - Bianca C. T. Flores
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (C.G.-T.); (B.C.T.F.); (V.M.-G.); (C.J.)
| | - Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (C.G.-T.); (B.C.T.F.); (V.M.-G.); (C.J.)
- Department of Pathology and Molecular Immunology, ICBAS–School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rita Guimarães
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072 Porto, Portugal; (B.C.L.); (R.G.); (M.C.); (P.L.)
| | - Mariana Cantante
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072 Porto, Portugal; (B.C.L.); (R.G.); (M.C.); (P.L.)
| | - Paula Lopes
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072 Porto, Portugal; (B.C.L.); (R.G.); (M.C.); (P.L.)
| | - Isaac Braga
- Department of Urology, Portuguese Oncology Institute of Porto (IPOP), 4200-072 Porto, Portugal;
| | - Joaquina Maurício
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPOP), 4200-072 Porto, Portugal;
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (C.G.-T.); (B.C.T.F.); (V.M.-G.); (C.J.)
- Department of Pathology and Molecular Immunology, ICBAS–School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072 Porto, Portugal; (B.C.L.); (R.G.); (M.C.); (P.L.)
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (C.G.-T.); (B.C.T.F.); (V.M.-G.); (C.J.)
- Department of Pathology and Molecular Immunology, ICBAS–School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Correspondence: (R.H.); or (J.L.)
| | - João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072 Porto, Portugal; (B.C.L.); (R.G.); (M.C.); (P.L.)
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (C.G.-T.); (B.C.T.F.); (V.M.-G.); (C.J.)
- Department of Pathology and Molecular Immunology, ICBAS–School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Correspondence: (R.H.); or (J.L.)
| |
Collapse
|
11
|
Mobaraki F, Momeni M, Taghavizadeh Yazdi ME, Meshkat Z, Silanian Toosi M, Hosseini SM. Plant-derived synthesis and characterization of gold nanoparticles: Investigation of its antioxidant and anticancer activity against human testicular embryonic carcinoma stem cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Timmerman DM, Remmers TL, Hillenius S, Looijenga LHJ. Mechanisms of TP53 Pathway Inactivation in Embryonic and Somatic Cells-Relevance for Understanding (Germ Cell) Tumorigenesis. Int J Mol Sci 2021; 22:ijms22105377. [PMID: 34065345 PMCID: PMC8161298 DOI: 10.3390/ijms22105377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 01/10/2023] Open
Abstract
The P53 pathway is the most important cellular pathway to maintain genomic and cellular integrity, both in embryonic and non-embryonic cells. Stress signals induce its activation, initiating autophagy or cell cycle arrest to enable DNA repair. The persistence of these signals causes either senescence or apoptosis. Over 50% of all solid tumors harbor mutations in TP53 that inactivate the pathway. The remaining cancers are suggested to harbor mutations in genes that regulate the P53 pathway such as its inhibitors Mouse Double Minute 2 and 4 (MDM2 and MDM4, respectively). Many reviews have already been dedicated to P53, MDM2, and MDM4, while this review additionally focuses on the other factors that can deregulate P53 signaling. We discuss that P14ARF (ARF) functions as a negative regulator of MDM2, explaining the frequent loss of ARF detected in cancers. The long non-coding RNA Antisense Non-coding RNA in the INK4 Locus (ANRIL) is encoded on the same locus as ARF, inhibiting ARF expression, thus contributing to the process of tumorigenesis. Mutations in tripartite motif (TRIM) proteins deregulate P53 signaling through their ubiquitin ligase activity. Several microRNAs (miRNAs) inactivate the P53 pathway through inhibition of translation. CCCTC-binding factor (CTCF) maintains an open chromatin structure at the TP53 locus, explaining its inactivation of CTCF during tumorigenesis. P21, a downstream effector of P53, has been found to be deregulated in different tumor types. This review provides a comprehensive overview of these factors that are known to deregulate the P53 pathway in both somatic and embryonic cells, as well as their malignant counterparts (i.e., somatic and germ cell tumors). It provides insights into which aspects still need to be unraveled to grasp their contribution to tumorigenesis, putatively leading to novel targets for effective cancer therapies.
Collapse
|
13
|
Cisplatin Resistance in Testicular Germ Cell Tumors: Current Challenges from Various Perspectives. Cancers (Basel) 2020; 12:cancers12061601. [PMID: 32560427 PMCID: PMC7352163 DOI: 10.3390/cancers12061601] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Testicular germ cell tumors share a marked sensitivity to cisplatin, contributing to their overall good prognosis. However, a subset of patients develop resistance to platinum-based treatments, by still-elusive mechanisms, experiencing poor quality of life due to multiple (often ineffective) interventions and, eventually, dying from disease. Currently, there is a lack of defined treatment opportunities for these patients that tackle the mechanism(s) underlying the emergence of resistance. Herein, we aim to provide a multifaceted overview of cisplatin resistance in testicular germ cell tumors, from the clinical perspective, to the pathobiology (including mechanisms contributing to induction of the resistant phenotype), to experimental models available for studying this occurrence. We provide a systematic summary of pre-target, on-target, post-target, and off-target mechanisms putatively involved in cisplatin resistance, providing data from preclinical studies and from those attempting validation in clinical samples, including those exploring specific alterations as therapeutic targets, some of them included in ongoing clinical trials. We briefly discuss the specificities of resistance related to teratoma (differentiated) phenotype, including the phenomena of growing teratoma syndrome and development of somatic-type malignancy. Cisplatin resistance is most likely multifactorial, and a combination of therapeutic strategies will most likely produce the best clinical benefit.
Collapse
|