1
|
Otani N, Tomita K, Kobayashi Y, Kuroda K, Kobayashi H, Kubo T. Hydrogen-Generating Silicon-Based Agent Improves Fat Graft Survival in Rats. Plast Reconstr Surg 2024; 154:90e-99e. [PMID: 37433126 DOI: 10.1097/prs.0000000000010919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
BACKGROUND Regulating excessive inflammation and oxidative stress in fat grafting may improve retention rates. Hydrogen effectively combats oxidative stress and inflammation and reportedly inhibits ischemia-reperfusion injury in various organs. However, with conventional methods of hydrogen administration, incorporating hydrogen continuously into the body over a long period of time is difficult. The authors hypothesized that a silicon (Si)-based agent they recently developed would aid in fat grafting, as it can generate large amounts of hydrogen continuously in the body. METHODS Fat grafting was performed on the backs of rats fed either a normal or 1.0 wt% Si-based agent-containing diet. To investigate synergistic effects with adipose-derived stromal cells (ASCs), which improve retention rates of fat grafting, fat grafting with ASCs (1.0 × 10 5 /400 mg fat) was also performed in each rat. Postoperative retention rates of grafted fat over time, inflammatory indices, apoptosis, oxidative stress markers, histologic findings, and expression levels of inflammation-related cytokines and growth factors were compared among the 4 groups. RESULTS Intake of Si-based agent and addition of ASCs significantly reduced inflammatory indices, oxidative stress, and apoptosis of grafted fat, and improved long-term retention rates, histologic measures, and grafted fat quality. Under the experimental conditions, intake of the Si-based agent and addition of ASCs yielded comparable improvements in fat graft retention. Combining the 2 enhanced these effects. CONCLUSIONS Oral administration of a hydrogen-generating Si-based agent may improve grafted fat retention by regulating the inflammatory response and oxidative stress in grafted fat. CLINICAL RELEVANCE STATEMENT This study demonstrates improved grafted fat retention rates using a Si-based agent. This Si-based agent has the potential to expand the range of therapeutic indications of hydrogen-based therapy to conditions for which hydrogen has yet to be found effective, such as fat grafting.
Collapse
Affiliation(s)
- Naoya Otani
- From the Department of Plastic Surgery, Osaka University Graduate School of Medicine
| | - Koichi Tomita
- From the Department of Plastic Surgery, Osaka University Graduate School of Medicine
- Department of Plastic and Reconstructive Surgery, Kindai University Faculty of Medicine
| | - Yuki Kobayashi
- Institute of Scientific and Industrial Research, Osaka University
| | - Kazuya Kuroda
- From the Department of Plastic Surgery, Osaka University Graduate School of Medicine
| | - Hikaru Kobayashi
- Institute of Scientific and Industrial Research, Osaka University
| | - Tateki Kubo
- From the Department of Plastic Surgery, Osaka University Graduate School of Medicine
| |
Collapse
|
2
|
Koyama Y, Kobayashi Y, Kobayashi H, Shimada S. Diverse Possibilities of Si-Based Agent, a Unique New Antioxidant. Antioxidants (Basel) 2023; 12:antiox12051061. [PMID: 37237927 DOI: 10.3390/antiox12051061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Antioxidant therapy is an effective approach for treating diseases in which oxidative stress is involved in the onset of symptoms. This approach aims to rapidly replenish the antioxidant substances in the body when they are depleted due to excess oxidative stress. Importantly, a supplemented antioxidant must specifically eliminate harmful reactive oxygen species (ROS) without reacting with physiologically beneficial ROS, which are important to the body. In this regard, typically used antioxidant therapies can be effective, but may cause adverse effects due to their lack of specificity. We believe that Si-based agents are epoch-making drugs that can overcome these problems associated with current antioxidative therapy. These agents alleviate the symptoms of oxidative-stress-associated diseases by generating large amounts of the antioxidant hydrogen in the body. Moreover, Si-based agents are expected to be highly effective therapeutic drug candidates because they have anti-inflammatory, anti-apoptotic, and antioxidant effects. In this review, we discuss Si-based agents and their potential future applications in antioxidant therapy. There have been several reports of hydrogen generation from silicon nanoparticles, but unfortunately, none have been approved as pharmaceutical agents. Therefore, we believe that our research into medical applications using Si-based agents is a breakthrough in this research field. The knowledge obtained thus far from animal models of pathology may greatly contribute to the improvement of existing treatment methods and the development of new treatment methods. We hope that this review will further revitalize the research field of antioxidants and lead to the commercialization of Si-based agents.
Collapse
Affiliation(s)
- Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | | | | | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| |
Collapse
|
3
|
Ye X, Peng T, Chen Z, Liao C, Li X, Lan Y, Fu X, An G. Semen parameters' mediation effect on the association between advanced paternal age and IVF clinical outcomes: A 10-year retrospective cohort study. Maturitas 2023; 173:20-27. [PMID: 37182387 DOI: 10.1016/j.maturitas.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/16/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE To explore the mediation between advanced paternal age and the outcomes of in vitro fertilization (IVF) in a female-adjusted cohort. METHODS The study retrospectively included couples undergoing IVF cycles between 2011 and 2020, and whose female partner was free of medical conditions that would significantly worsen clinical outcomes. Data on patient medical conditions, clinical data, and follow-up information were collected. Causal mediation effect analysis adopting both linear/logistic regression and mixed-effects models was carried out to evaluate the effect of paternal age on the outcomes. RESULTS 21,959 IVF cycles were included in the study. Semen volume, sperm motility and sperm morphology were significantly associated (P value <0.05) with paternal age. A lower fertilization rate was associated with increased paternal age after adjustment for maternal age (adjusted OR = 0.800; 95 % CI, 0.678, 0.943; P value = 0.008). Mediation analysis revealed that A-level sperm rate and progressive rate respectively mediated 37.0 % and 41.0 % of the association between paternal age and fertilization rate. CONCLUSION Sperm motility rate, especially A-level sperm rate and rapid progressive rate, mediated the association between advanced paternal age and lower fertilization rate in the cycles.
Collapse
Affiliation(s)
- Xin Ye
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tianwen Peng
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhicong Chen
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chen Liao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaomin Li
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu Lan
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Fu
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Geng An
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Marie Johnsen H, Filtvedt W, Hiorth M, Klaveness J. Silicon nanoparticles for oral administration of molecular hydrogen. Int J Pharm 2022; 629:122371. [DOI: 10.1016/j.ijpharm.2022.122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
|
5
|
Otani N, Tomita K, Kobayashi Y, Kuroda K, Koyama Y, Kobayashi H, Kubo T. Hydrogen-generating Si-based agent protects against skin flap ischemia-reperfusion injury in rats. Sci Rep 2022; 12:6168. [PMID: 35418596 PMCID: PMC9008008 DOI: 10.1038/s41598-022-10228-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Hydrogen is effective against ischemia–reperfusion (I/R) injury in skin flaps. However, the difficulty of continuously administering a sufficient amount of hydrogen using conventional methods has been an issue in the clinical application of hydrogen-based therapy. An Si-based agent administered orally was previously shown to continuously generate a large amount of hydrogen in the intestinal environment. In this study, we assessed the effect of the Si-based agent on the inhibition of I/R injury in skin flaps using a rat model. In the I/R groups, the vascular pedicle of the abdominal skin flap was occluded for three hours followed by reperfusion. In the I/R + Si group, the Si-based agent was administered perioperatively. After reperfusion, flap survival rate, blood flow, oxidative stress markers, inflammatory markers/findings, and degree of apoptosis were evaluated. Flap survival rate was significantly higher, and histological inflammation, apoptotic cells, oxidative stress markers, and levels of inflammatory cytokine mRNA and protein expression were significantly lower, in the I/R + Si group compared to the I/R group. The Si-based agent suppressed oxidative stress, apoptosis, and inflammatory reactions resulting from I/R injury, thereby contributing to improvements in skin flap survival.
Collapse
Affiliation(s)
- Naoya Otani
- Department of Plastic and Reconstructive Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Tomita
- Department of Plastic and Reconstructive Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Yuki Kobayashi
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Kazuya Kuroda
- Department of Plastic and Reconstructive Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan.,Addiction Research Unit, Development of Novel Diagnosis and Treatment Division, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Hikaru Kobayashi
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Tateki Kubo
- Department of Plastic and Reconstructive Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
6
|
Takahashi Y, Kioka H, Fukuhara S, Kuribayashi S, Saito S, Asano Y, Takashima S, Yoshioka Y, Sakata Y. Visualization of Spatial Distribution of Spermatogenesis in Mouse Testes Using Creatine Chemical Exchange Saturation Transfer Imaging. J Magn Reson Imaging 2021; 54:1457-1465. [PMID: 34056801 DOI: 10.1002/jmri.27734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND When determining treatment strategies for male infertility, it is important to evaluate spermatogenesis and its spatial distribution in the testes. PURPOSE To investigate the usefulness of creatine chemical exchange saturation transfer (CrCEST) imaging for evaluating spermatogenesis and its spatial distribution. STUDY TYPE Prospective. ANIMAL MODEL C57BL/6 control mice (n = 5) and model mice of male infertility induced by whole testis X-ray irradiation (n = 11) or localized X-ray irradiation to lower regions of testes (n = 3). FIELD STRENGTH/SEQUENCE A 11.7-T vertical-bore magnetic resonance imaging (MRI)/segmented fast low-angle shot acquisition for CEST. ASSESSMENT The magnetization transfer ratio for the CrCEST effect (MTRCr* ) was calculated in each testis of the control mice and X-ray irradiation model mice at 10, 15, 20, and 30 days after irradiation. Correlation analysis was performed between MTRCr* and Johnsen's score, a histological score for spermatogenesis. In the localized X-ray irradiation model, regional MTRCr* and Johnsen's score were calculated for correlation analysis. STATISTICAL TESTS Unpaired t-test, one-way analysis of variance with Tukey's HSD test and Pearson's correlation analysis. A P value < 0.05 was considered statistically significant. RESULTS In the irradiation model, CrCEST imaging revealed a significant linear decrease of MTRCr* after irradiation (control, 8.7 ± 0.6; 10 days, 7.9 ± 0.8; 15 days, 6.5 ± 0.6; 20 days, 5.4 ± 1.0; 30 days, 4.4 ± 0.8). A significant linear correlation was found between MTRCr* and Johnsen's score (Pearson's correlation coefficient (r) = 0.79). In the localized irradiation model, CrCEST imaging visualized a significant regional decrease of MTRCr* in the unshielded region (shielded, 6.9 ± 0.7; unshielded, 4.9 ± 1.0), and a significant linear correlation was found between regional MTRCr* and Johnsen's score (r = 0.78). DATA CONCLUSION Testicular CrCEST effects correlated well with spermatogenesis. CrCEST imaging was useful for evaluating spermatogenesis and its spatial distribution. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Hidetaka Kioka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinichiro Fukuhara
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Sohei Kuribayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shigeyoshi Saito
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Biomedical Imaging, National Cardiovascular and Cerebral Research Center, Suita, Osaka, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Bioscience, Suita, Osaka, Japan
| | - Yoshichika Yoshioka
- Laboratory of Biofunctional Imaging, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,Center for Information and Neural Networks (CiNet), Osaka University and Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
7
|
Zhang Y, Liu H, Xu J, Zheng S, Zhou L. Hydrogen Gas: A Novel Type of Antioxidant in Modulating Sexual Organs Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8844346. [PMID: 33510842 PMCID: PMC7826209 DOI: 10.1155/2021/8844346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 02/02/2023]
Abstract
Sex is a science of cutting edge but bathed in mystery. Coitus or sexual intercourse, which is at the core of sexual activities, requires healthy and functioning vessels to supply the pelvic region, thus contributing to clitoris erection and vaginal lubrication in female and penile erection in male. It is well known that nitric oxide (NO) is the main gas mediator of penile and clitoris erection. In addition, the lightest and diffusible gas molecule hydrogen (H2) has been shown to improve erectile dysfunction (ED), testis injuries, sperm motility in male, preserve ovarian function, protect against uterine inflammation, preeclampsia, and breast cancer in female. Mechanistically, H2 has strong abilities to attenuate excessive oxidative stress by selectively reducing cytotoxic oxygen radicals, modulate immunity and inflammation, and inhibit injuries-induced cell death. Therefore, H2 is a novel bioactive gas molecule involved in modulating sexual organs homeostasis.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haimei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinwen Xu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lequan Zhou
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|