1
|
Peris-Frau P, Sanchez-Rodriguez A, Velázquez R, Toledano-Díaz A, Castaño C, Roldan ERS, Santiago-Moreno J. Capacitation of ram spermatozoa promotes changes in energy metabolism and aquaporin 3 and is affected by individual testosterone variations. Andrology 2024. [PMID: 39238428 DOI: 10.1111/andr.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Recently, the metabolic pathways involved in energy production and the role of aquaglyceroporins in capacitation-associated events have been studied in humans and mice. However, little is known about these in ram spermatozoa. OBJECTIVE The present study investigated bioenergetic and aquaglyceroporin 3 variations during in vitro capacitation of ram spermatozoa. In addition, differences in testosterone levels between males were examined to determine their influence on capacitation-like changes. MATERIALS AND METHODS Spermatozoa obtained from nine rams (ejaculates = 36) were incubated for 180 min in three different media (control, capacitating, and aquaglyceroporin-inhibitor media) at 38.5°C. At 0 and 180 min of incubation in each medium, sperm viability, kinetics, chlortetracycline patterns, adenosine triphosphate concentration, lactate excretion (final subproduct of glycolysis), and immunolocalization of aquaporin 3 were evaluated. RESULTS The increment of the capacitated spermatozoa-chlortetracycline pattern and the hyperactivated-like movement characterized by the highest curvilinear velocity and amplitude of lateral head displacement and the lowest linearity was only recorded after 180 min in the capacitating medium. At this time and conditions, adenosine triphosphate content and lactate excretion decreased, whereas the aquaglyceroporin 3 location in the midpiece and principal piece increased compared to 0 min. Such changes were not observed in the control medium over time. Incubation in the aquaglyceroporin-inhibitor medium for 180 min reduced drastically sperm motility and adenosine triphosphate content compared to the other media. Testosterone analysis revealed a significant individual variability, which was also present in all sperm parameters evaluated. Furthermore, testosterone was negatively correlated with adenosine triphosphate content but positively correlated with lactate excretion levels, sperm viability, motility, capacitated sperm-chlortetracycline pattern, and aquaglyceroporin 3 immunolabeling in the midpiece and principal piece. CONCLUSION Despite individual differences, capacitation of ram spermatozoa increases adenosine triphosphate consumption, energy metabolism, and aquaglyceroporin 3 location in the midpiece and principal piece, which seems to be related to the acquisition of hyperactivated-like motility. Furthermore, testosterone levels may serve as a valuable tool to select those males with a greater sperm metabolism rate and fertilizing capacity.
Collapse
Affiliation(s)
- Patricia Peris-Frau
- Departament of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (CSIC), Madrid, Spain
| | - Ana Sanchez-Rodriguez
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences (CSIC), Madrid, Spain
| | - Rosario Velázquez
- Departament of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (CSIC), Madrid, Spain
| | - Adolfo Toledano-Díaz
- Departament of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (CSIC), Madrid, Spain
| | - Cristina Castaño
- Departament of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (CSIC), Madrid, Spain
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences (CSIC), Madrid, Spain
| | - Julián Santiago-Moreno
- Departament of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (CSIC), Madrid, Spain
| |
Collapse
|
2
|
Fouladvandi R, Masoudi AA, Totonchi M, Hezavehei M, Sharafi M. Effects of different extenders on epigenetic patterns and functional parameters of bull sperm during cryopreservation process. Reprod Domest Anim 2024; 59:e14570. [PMID: 38700367 DOI: 10.1111/rda.14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
The cryopreservation process induces alterations in cellular parameters and epigenetic patterns in bull sperm, which can be prevented by adding cryoprotectants in the freezing extenders. The purpose of this study was to compare the protective effects of two extenders based on soybean lecithin (SLE) and egg yolk (EYE) on epigenetic patterns and quality parameters of sperm such as motility parameters, mitochondrial membrane integrity, DNA fragmentation, viability, and apoptotic-like changes of bull sperm after cryopreservation. Results demonstrated that cryopreservation significantly (p < .05) reduced the level of DNA global methylation, H3K9 histone acetylation, and H3K4 histone methylation in both frozen groups compared to the fresh sperm. Also, the level of H3K9 acetylation was lower in the frozen SLE group (21.2 ± 1.86) compared to EYE group (15.2 ± 1.86). In addition, the SLE frozen group had a higher percentage of viability, progressive motility, and linearity (LIN) in SLE frozen group compared to EYE frozen group. However, no difference was observed in mitochondrial membrane integrity and DNA fragmentation between SLE and EYE frozen groups. While soybean-lecithin-based extender showed some initial positive impacts of epigenetics and semen parameters, further investigations can provide useful information for better freezing.
Collapse
Affiliation(s)
- Razieh Fouladvandi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Research Center for Reproduction and Fertility, Faculty of Veterinary Medicine, Montreal University, Quebec, Canada
| | - Mohsen Sharafi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Semex Alliance, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Spanner EA, de Graaf SP, Rickard JP. Factors affecting the success of laparoscopic artificial insemination in sheep. Anim Reprod Sci 2024; 264:107453. [PMID: 38547814 DOI: 10.1016/j.anireprosci.2024.107453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/06/2024] [Accepted: 03/10/2024] [Indexed: 05/01/2024]
Abstract
Successful artificial breeding underpins rapid genetic and production gains in animal agriculture. In sheep, artificial insemination with frozen semen is performed via intrauterine laparoscopy as frozen-thawed spermatozoa do not traverse the cervix in sufficient numbers for high fertility and transcervical insemination is anatomically impossible in most ewes. Historically, laparoscopic artificial insemination has always been considered reasonably successful, but recent anecdotal reports of poor fertility place it at risk of warning adoption. Understanding the male, female and environmental factors that influence the fertility of sheep is warranted if the success of artificial insemination is to be improved and genetic progress maximised for the sheep industry. This review details the current practice of laparoscopic AI in sheep. It explores the effects of semen quantity and quality, the ewe, her preparation, and environmental conditions, on the fertility obtained following laparoscopic artificial insemination.
Collapse
Affiliation(s)
- E A Spanner
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW 2006, Australia.
| | - S P de Graaf
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW 2006, Australia
| | - J P Rickard
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW 2006, Australia
| |
Collapse
|
4
|
Cryopreservation of Human Spermatozoa: Functional, Molecular and Clinical Aspects. Int J Mol Sci 2023; 24:ijms24054656. [PMID: 36902084 PMCID: PMC10002855 DOI: 10.3390/ijms24054656] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Cryopreservation is an expanding strategy to allow not only fertility preservation for individuals who need such procedures because of gonadotoxic treatments, active duty in dangerous occupations or social reasons and gamete donation for couples where conception is denied, but also for animal breeding and preservation of endangered animal species. Despite the improvement in semen cryopreservation techniques and the worldwide expansion of semen banks, damage to spermatozoa and the consequent impairment of its functions still remain unsolved problems, conditioning the choice of the technique in assisted reproduction procedures. Although many studies have attempted to find solutions to limit sperm damage following cryopreservation and identify possible markers of damage susceptibility, active research in this field is still required in order to optimize the process. Here, we review the available evidence regarding structural, molecular and functional damage occurring in cryopreserved human spermatozoa and the possible strategies to prevent it and optimize the procedures. Finally, we review the results on assisted reproduction technique (ARTs) outcomes following the use of cryopreserved spermatozoa.
Collapse
|
5
|
Khosravizadeh Z, Khodamoradi K, Rashidi Z, Jahromi M, Shiri E, Salehi E, Talebi A. Sperm cryopreservation and DNA methylation: possible implications for ART success and the health of offspring. J Assist Reprod Genet 2022; 39:1815-1824. [PMID: 35713751 PMCID: PMC9428082 DOI: 10.1007/s10815-022-02545-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/09/2022] [Indexed: 01/19/2023] Open
Abstract
Despite the beneficial effects of sperm cryopreservation, increased reactive oxygen species (ROS) production during this process can affect spermatozoon structure and function. Moreover, ROS production is associated with elevated DNA damage and alterations in DNA methylation. There is little information about the effects of cryopreservation on epigenetic modulation in sperm and the health of children born with frozen spermatozoa. Considering the potential consequences of cryopreservation in ART-conceived children, it is necessary to assure that cryopreservation does not modify sperm DNA methylation status. This review summarizes reports on epigenetic modifications of spermatozoa during cryopreservation and the probable effects of this process on offspring health. Contradictory results have reported the influence of sperm cryopreservation on DNA methylation in imprinted genes. Multiclinical studies with larger sample sizes under the same conditions of cryopreservation and DNA methylation analysis are needed to make any definitive conclusion about the effect of the cryopreservation process on sperm DNA methylation.
Collapse
Affiliation(s)
- Zahra Khosravizadeh
- grid.468130.80000 0001 1218 604XClinical Research Development Unit, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Kajal Khodamoradi
- grid.26790.3a0000 0004 1936 8606Department of Urology, University of Miami, Miller School of Medicine, Miami, FL USA
| | - Zahra Rashidi
- grid.412112.50000 0001 2012 5829Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran ,grid.412112.50000 0001 2012 5829Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Malihe Jahromi
- grid.411757.10000 0004 1755 5416Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Elham Shiri
- grid.411950.80000 0004 0611 9280Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ensieh Salehi
- grid.412237.10000 0004 0385 452XFertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ali Talebi
- grid.444858.10000 0004 0384 8816School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran ,grid.444858.10000 0004 0384 8816Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
6
|
Vašíček J, Baláži A, Svoradová A, Vozaf J, Dujíčková L, Makarevich AV, Bauer M, Chrenek P. Comprehensive Flow-Cytometric Quality Assessment of Ram Sperm Intended for Gene Banking Using Standard and Novel Fertility Biomarkers. Int J Mol Sci 2022; 23:ijms23115920. [PMID: 35682598 PMCID: PMC9180808 DOI: 10.3390/ijms23115920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Flow cytometry becomes a common method for analysis of spermatozoa quality. Standard sperm characteristics such as viability, acrosome and chromatin integrity, oxidative damage (ROS) etc. can be easily assess in any animal semen samples. Moreover, several fertility-related markers were observed in humans and some other mammals. However, these fertility biomarkers have not been previously studied in ram. The aim of this study was to optimize the flow-cytometric analysis of these standard and novel markers in ram semen. Ram semen samples from Slovak native sheep breeds were analyzed using CASA system for motility and concentration and were subsequently stained with several fluorescent dyes or specific antibodies to evaluate sperm viability (SYBR-14), apoptosis (Annexin V, YO-PRO-1, FLICA, Caspases 3/7), acrosome status (PNA, LCA, GAPDHS), capacitation (merocyanine 540, FLUO-4 AM), mitochondrial activity (MitoTracker Green, rhodamine 123, JC-1), ROS (CM-H2DCFDA, DHE, MitoSOX Red, BODIPY), chromatin (acridine orange), leukocyte content, ubiquitination and aggresome formation, and overexpression of negative biomarkers (MKRN1, SPTRX-3, PAWP, H3K4me2). Analyzed semen samples were divided into two groups according to viability as indicators of semen quality: Group 1 (viability over 60%) and Group 2 (viability under 60%). Significant (p < 0.05) differences were found between these groups in sperm motility and concentration, apoptosis, acrosome integrity (only PNA), mitochondrial activity, ROS production (except for DHE), leukocyte and aggresome content, and high PAWP expression. In conclusion, several standard and novel fluorescent probes have been confirmed to be suitable for multiplex ram semen analysis by flow cytometry as well as several antibodies have been validated for the specific detection of ubiquitin, PAWP and H3K4me2 in ram spermatozoa.
Collapse
Affiliation(s)
- Jaromír Vašíček
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (A.S.); (L.D.); (A.V.M.); (M.B.)
- Institute of Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- Correspondence: (J.V.); (P.C.); Tel.: +421-37-654-6600 (J.V.); +421-37-641-4274 (P.C.)
| | - Andrej Baláži
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (A.S.); (L.D.); (A.V.M.); (M.B.)
| | - Andrea Svoradová
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (A.S.); (L.D.); (A.V.M.); (M.B.)
- Department of Morphology, Physiology and Animal Genetics, Faculty of Agri Sciences, Mendel University in Brno, Zemědělská 1/1665, 613 00 Brno, Czech Republic
| | - Jakub Vozaf
- Institute of Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Linda Dujíčková
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (A.S.); (L.D.); (A.V.M.); (M.B.)
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nábrežie Mládeže 91, 949 74 Nitra, Slovakia
| | - Alexander V. Makarevich
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (A.S.); (L.D.); (A.V.M.); (M.B.)
| | - Miroslav Bauer
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (A.S.); (L.D.); (A.V.M.); (M.B.)
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nábrežie Mládeže 91, 949 74 Nitra, Slovakia
| | - Peter Chrenek
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (A.S.); (L.D.); (A.V.M.); (M.B.)
- Institute of Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- Correspondence: (J.V.); (P.C.); Tel.: +421-37-654-6600 (J.V.); +421-37-641-4274 (P.C.)
| |
Collapse
|
7
|
Wang Y, Yuan X, Ali MA, Qin Z, Zhang Y, Zeng C. piR-121380 Is Involved in Cryo-Capacitation and Regulates Post-Thawed Boar Sperm Quality Through Phosphorylation of ERK2 via Targeting PTPN7. Front Cell Dev Biol 2022; 9:792994. [PMID: 35155446 PMCID: PMC8826432 DOI: 10.3389/fcell.2021.792994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/24/2021] [Indexed: 01/06/2023] Open
Abstract
Cryopreservation induces capacitation-like (cryo-capacitation) changes, similar to natural capacitation, and affects the fertility potential of post-thawed sperm. The molecular mechanism of sperm cryo-capacitation during cryopreservation remains unknown. PIWI-interacting RNAs (piRNAs) have been reported to be involved in cryo-capacitation of post-thawed sperm and regulation of sperm motility, capacitation, and chemotaxis. In this study, protein tyrosine phosphatase nonreceptor type 7 (PTPN7) was positively targeted by piR-121380 after a dual luciferase assay. The mRNA expression of PTPN7 and piR-121380 was significantly decreased (p < 0.01); however, PTPN7 protein was significantly increased (p < 0.01) in post-thawed boar sperm. Furthermore, E1RK1/2 phosphorylation was reduced during cryopreservation. Six hours after transfection with piR-121380 mimic and inhibitor, the phosphorylation of ERK2 was significantly increased and decreased (p < 0.01), respectively. Furthermore, the highest and lowest total sperm motility, forward motility, and capacitation rate were observed after piR-121380 mimic and inhibitor treatments, respectively. The concentration of intracellular calcium ([Ca2+]i) showed no significant difference after transfection with either piR-121380 mimic or inhibitor at 1, 3, and 6 h. In conclusion, we demonstrated that piR-121380 modulates ERK2 phosphorylation by targeting PTPN7, which induces sperm cryo-capacitation, and eventually affects the motility and fertility potential of post-thawed sperm.
Collapse
Affiliation(s)
- Yihan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiang Yuan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Malik Ahsan Ali
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Department of Theriogenology, Riphah College of Veterinary Sciences, Lahore, Pakistan
| | - Ziyue Qin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Changjun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Changjun Zeng,
| |
Collapse
|
8
|
Impact of Cryopreservation on Motile Subpopulations and Tyrosine-Phosphorylated Regions of Ram Spermatozoa during Capacitating Conditions. BIOLOGY 2021; 10:biology10111213. [PMID: 34827206 PMCID: PMC8614982 DOI: 10.3390/biology10111213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Spermatozoa go through diverse changes to achieve their fertilizing potential (capacitation) and develop a specific motility pattern (hyperactivation). However, to ensure a greater reproductive success, not all the spermatozoa present in an ejaculate react equally or at the same time. Therefore, a comparative analysis was performed in the present study to improve our current understanding about how cryopreservation may affect the heterogeneous nature of fresh ejaculates during these two events. Among the four motile sperm subpopulations identified in fresh and frozen-thawed ram semen, one of them developed a hyperactivated-like movement and was the main group involve in those changes associated with sperm capacitation based on the marked increase and the positive correlation with mitochondrial activity and tyrosine phosphorylation, two relevant parameters that usually increase during capacitation. In addition, cryopreservation altered the distribution of the motile sperm subpopulations. Although the subpopulation with hyperactivated-like movement increased at the beginning of incubation in frozen-thawed samples, this subpopulation together with the subpopulation of rapid and progressive spermatozoa were replaced after a prolonged incubation by the subpopulation of slow spermatozoa with the lowest mitochondrial activity, which clearly indicate the reduction in sperm quality. These findings will aid to optimize the current cryopreservation and in vitro fertilization protocols. Abstract The heterogeneous nature of ejaculates highlights the relevance of studying the behavior of different sperm subpopulations. Changes in sperm motility and the increase in tyrosine phosphorylation are key events that usually occur during capacitation and can be modified by the cryopreservation process. However, the relationship between both events remains poorly defined throughout capacitation in the different sperm subpopulations. Fresh and frozen-thawed spermatozoa were incubated in capacitating (CAP) and non-capacitating (NC) media up to 240 min. Sperm kinematics, tyrosine phosphorylation and mitochondrial activity were measured by the CASA system and imaging flow cytometry. Four motile sperm subpopulations (SP) were identified in fresh and frozen-thawed ram semen after the cluster analysis. Incubation under CAP conditions over time led to greater changes in the percentage of spermatozoa included in each subpopulation compared to NC conditions, being different between fresh and frozen-thawed spermatozoa. The SP1, characterized by slow spermatozoa, progressively increased after 15 min in frozen-thawed samples incubated in both media but not in fresh ones. The SP4, characterized by fast and non-linear spermatozoa, showed a marked increase during CAP, but not under NC conditions, occurring more rapidly in frozen-thawed spermatozoa. This subpopulation (SP4) was also the only one positively and strongly correlated with mitochondrial activity and all phosphorylated sperm regions during capacitation, either in fresh or frozen-thawed samples. Our results indicated that in vitro capacitation induced significant changes in the distribution of motile sperm subpopulations, being affected by cryopreservation. Notwithstanding, the subpopulation which probably represents hyperactivated-like spermatozoa (SP4) also increased in frozen-thawed samples, occurring faster and simultaneously to the increment of mitochondrial activity and tyrosine phosphorylation of different sperm regions.
Collapse
|
9
|
Carro MDLM, Ramírez-Vasquez RRA, Peñalva DA, Buschiazzo J, Hozbor FA. Desmosterol Incorporation Into Ram Sperm Membrane Before Cryopreservation Improves in vitro and in vivo Fertility. Front Cell Dev Biol 2021; 9:660165. [PMID: 34249914 PMCID: PMC8264764 DOI: 10.3389/fcell.2021.660165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Pregnancy rates in ewes are markedly low after cervical insemination with frozen-thawed sperm. Sensitivity of ram sperm to freeze-thawing is related to the lipid composition of the membrane, particularly to its low sterol content. Recently, we proved that sterol content of ram sperm can be increased by treatment with methyl-β-cyclodextrin-sterol complexes and we provided mechanistic based evidence on the differential behavior of cholesterol and desmosterol in the ram sperm membrane. In the present study, we evaluated the role of increasing cholesterol and desmosterol content of ram sperm before cryopreservation, on the extent and distribution of sterols, cryocapacitation status, acrosome integrity, DNA damage associated with apoptosis and fertility competence in vitro and in vivo of post-thawed sperm. After freeze-thawing, similar levels of sterol content were evidenced in control sperm cells and in those pre-incubated with either cholesterol or desmosterol. Still, moderately higher levels of sterols were registered in treated sperm compared to the control, indicating no physiological excess of sterols after thawing or sterol losses that exceed the control. Live cell imaging of fluorescent cholesterol evidenced the presence of sperm sub-populations differentially affected by freeze-thawing. Similar unimodal frequency profiles were observed between sterol-enriched groups, while the control exhibited a sub-population of sperm compatible with low sterol content. Tyrosine phosphorylation was significantly lower when ram sperm incorporated cholesterol compared to the control. No difference in this capacitation parameter was found between the latter and desmosterol-enriched sperm. The percentage of sperm with damaged acrosomes post-thawing, assessed by a fluorescent lectin, was reduced in sperm that incorporated sterols before freezing, irrespective of the sterol class. These results suggest that sterols exert a stabilizing effect on the acrosome. No differences were found in levels of apoptotic DNA fragmentation among experimental groups. As to fertility trials, desmosterol-enriched sperm gave rise to higher rates of in vitro activated oocytes by heterologous fertilization and to significantly lower pregnancy loss in vivo. Our research provides new insights on sterol incorporation into ram sperm prior to cryopreservation, in particular on the additional benefit of incorporating desmosterol as a strategy to improve fertility outcome.
Collapse
Affiliation(s)
- María de Las Mercedes Carro
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce, Argentina
| | - Rafael R A Ramírez-Vasquez
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce, Argentina
| | - Daniel A Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Jorgelina Buschiazzo
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce, Argentina
| | - Federico A Hozbor
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce, Argentina
| |
Collapse
|