1
|
Ren S, Li J, Dorado J, Sierra A, González-Díaz H, Duardo A, Shen B. From molecular mechanisms of prostate cancer to translational applications: based on multi-omics fusion analysis and intelligent medicine. Health Inf Sci Syst 2024; 12:6. [PMID: 38125666 PMCID: PMC10728428 DOI: 10.1007/s13755-023-00264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Prostate cancer is the most common cancer in men worldwide and has a high mortality rate. The complex and heterogeneous development of prostate cancer has become a core obstacle in the treatment of prostate cancer. Simultaneously, the issues of overtreatment in early-stage diagnosis, oligometastasis and dormant tumor recognition, as well as personalized drug utilization, are also specific concerns that require attention in the clinical management of prostate cancer. Some typical genetic mutations have been proved to be associated with prostate cancer's initiation and progression. However, single-omic studies usually are not able to explain the causal relationship between molecular alterations and clinical phenotypes. Exploration from a systems genetics perspective is also lacking in this field, that is, the impact of gene network, the environmental factors, and even lifestyle behaviors on disease progression. At the meantime, current trend emphasizes the utilization of artificial intelligence (AI) and machine learning techniques to process extensive multidimensional data, including multi-omics. These technologies unveil the potential patterns, correlations, and insights related to diseases, thereby aiding the interpretable clinical decision making and applications, namely intelligent medicine. Therefore, there is a pressing need to integrate multidimensional data for identification of molecular subtypes, prediction of cancer progression and aggressiveness, along with perosonalized treatment performing. In this review, we systematically elaborated the landscape from molecular mechanism discovery of prostate cancer to clinical translational applications. We discussed the molecular profiles and clinical manifestations of prostate cancer heterogeneity, the identification of different states of prostate cancer, as well as corresponding precision medicine practices. Taking multi-omics fusion, systems genetics, and intelligence medicine as the main perspectives, the current research results and knowledge-driven research path of prostate cancer were summarized.
Collapse
Affiliation(s)
- Shumin Ren
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
| | - Jiakun Li
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Julián Dorado
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
| | - Alejandro Sierra
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Humbert González-Díaz
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Aliuska Duardo
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Bairong Shen
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
2
|
Syed RU, Alshammari MD, Banu H, Khojali WMA, Jafar M, Nagaraju P, Alshammari A. Targeting the autophagy-miRNA axis in prostate cancer: toward novel diagnostic and therapeutic strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7421-7437. [PMID: 38761210 DOI: 10.1007/s00210-024-03153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
Since prostate cancer is one of the leading causes of cancer-related death, a better understanding of the molecular pathways guiding its development is imperative. A key factor in prostate cancer is autophagy, a cellular mechanism that affects both cell survival and death. Autophagy is essential in maintaining cellular homeostasis. Autophagy is a physiological mechanism wherein redundant or malfunctioning cellular constituents are broken down and recycled. It is essential for preserving cellular homeostasis and is implicated in several physiological and pathological conditions, including cancer. Autophagy has been linked to metastasis, tumor development, and treatment resistance in prostate cancer. The deregulation of miRNAs related to autophagy appears to be a crucial element in the etiology of prostate cancer. These miRNAs influence the destiny of cancer cells by finely regulating autophagic mechanisms. Numerous investigations have emphasized the dual function of specific miRNAs in prostate cancer, which alter autophagy-related pathways to function as either tumor suppressors or oncogenes. Notably, miRNAs have been linked to the control of autophagy and the proliferation, apoptosis, and migration of prostate cancer cells. To create customized therapy approaches, it is imperative to comprehend the dynamic interplay between autophagy and miRNAs in prostate cancer. The identification of key miRNAs provides potential diagnostic and prognostic markers. Unraveling the complex network of lncRNAs, like PCA3, also expands the repertoire of molecular targets for therapeutic interventions. This review explores the intricate interplay between autophagy and miRNAs in prostate cancer, focusing on their regulatory roles in cellular processes ranging from survival to programmed cell death.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia.
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
| | - Humera Banu
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Weam M A Khojali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, 14415, Sudan
| | - Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 34212, Saudi Arabia.
| | - Potnuri Nagaraju
- Department of Pharmaceutics, Mandesh Institute of Pharmaceutical Science and Research Center, Mhaswad, Maharashtra, India
| | - Alia Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
| |
Collapse
|
3
|
Al-Hawary SIS, Abdalkareem Jasim S, Altalbawy FMA, Kumar A, Kaur H, Pramanik A, Jawad MA, Alsaad SB, Mohmmed KH, Zwamel AH. miRNAs in radiotherapy resistance of cancer; a comprehensive review. Cell Biochem Biophys 2024; 82:1665-1679. [PMID: 38805114 DOI: 10.1007/s12013-024-01329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
While intensity-modulated radiation therapy-based comprehensive therapy increases outcomes, cancer patients still have a low five-year survival rate and a high recurrence rate. The primary factor contributing to cancer patients' poor prognoses is radiation resistance. A class of endogenous non-coding RNAs, known as microRNAs (miRNAs), controls various biological processes in eukaryotes. These miRNAs influence tumor cell growth, death, migration, invasion, and metastasis, which controls how human carcinoma develops and spreads. The correlation between the unbalanced expression of miRNAs and the prognosis and sensitivity to radiation therapy is well-established. MiRNAs have a significant impact on the regulation of DNA repair, the epithelial-to-mesenchymal transition (EMT), and stemness in the tumor radiation response. But because radio resistance is a complicated phenomena, further research is required to fully comprehend these mechanisms. Radiation response rates vary depending on the modality used, which includes the method of delivery, radiation dosage, tumor stage and grade, confounding medical co-morbidities, and intrinsic tumor microenvironment. Here, we summarize the possible mechanisms through which miRNAs contribute to human tumors' resistance to radiation.
Collapse
Affiliation(s)
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Salim Basim Alsaad
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
4
|
Taeb S, Rostamzadeh D, Amini SM, Rahmati M, Eftekhari M, Safari A, Najafi M. MicroRNAs targeted mTOR as therapeutic agents to improve radiotherapy outcome. Cancer Cell Int 2024; 24:233. [PMID: 38965615 PMCID: PMC11229485 DOI: 10.1186/s12935-024-03420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/22/2024] [Indexed: 07/06/2024] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that regulate genes and are involved in various biological processes, including cancer development. Researchers have been exploring the potential of miRNAs as therapeutic agents in cancer treatment. Specifically, targeting the mammalian target of the rapamycin (mTOR) pathway with miRNAs has shown promise in improving the effectiveness of radiotherapy (RT), a common cancer treatment. This review provides an overview of the current understanding of miRNAs targeting mTOR as therapeutic agents to enhance RT outcomes in cancer patients. It emphasizes the importance of understanding the specific miRNAs that target mTOR and their impact on radiosensitivity for personalized cancer treatment approaches. The review also discusses the role of mTOR in cell homeostasis, cell proliferation, and immune response, as well as its association with oncogenesis. It highlights the different ways in which miRNAs can potentially affect the mTOR pathway and their implications in immune-related diseases. Preclinical findings suggest that combining mTOR modulators with RT can inhibit tumor growth through anti-angiogenic and anti-vascular effects, but further research and clinical trials are needed to validate the efficacy and safety of using miRNAs targeting mTOR as therapeutic agents in combination with RT. Overall, this review provides a comprehensive understanding of the potential of miRNAs targeting mTOR to enhance RT efficacy in cancer treatment and emphasizes the need for further research to translate these findings into improved clinical outcomes.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Eftekhari
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Safari
- Department of Radiology, Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, 71439-14693, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Konoshenko M, Laktionov P, Bryzgunova O. Prostate cancer therapy outcome prediction: are miRNAs a suitable guide for therapeutic decisions? Andrology 2024; 12:705-718. [PMID: 37750354 DOI: 10.1111/andr.13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Radical prostatectomy, radiotherapy, chemotherapy, and androgen-deprivation therapy are among the most common treatment options for different forms of prostate cancer (PCa). However, making therapeutic decisions is difficult due to the lack of reliable prediction markers indicating therapy outcomes in clinical practice. The involvement of miRNAs in all mechanisms of the PCa development and their easy detection characterize them as attractive PCa biomarkers. Although there are extensive data on the role of miRNAs in PCa therapy resistance and sensitivity development, the issues of whether they could be used as a guide for therapy choice and, if so, how we can progress toward this goal, remain unclear. Thus, generalizable reviews and studies which summarize, compare, and analyze data on miRNA involvement in responses to different types of PCa therapies are required. OBJECTIVES Data on the involvement of miRNAs in therapy responses, on the role of cross-miRNA expression in different therapies, and on miRNA targets were analyzed in order to determine the miRNA-related factors which can lend perspective to the future development of personalized predictors of PCa sensitivity/resistance to therapies. MATERIALS AND METHODS The data available on the miRNAs associated with different PCa therapies (resistance and sensitivity therapies) are summarized and analyzed in this study, including analyses using bioinformatics resources. Special attention was dedicated to the mechanisms of the development of therapy resistance. RESULTS AND DISCUSSION A comprehensive combined analysis of the current data revealed a panel of miRNAs that were shown to be most closely associated with the PCa therapy response and were found to regulate the genes involved in PCa development via cell proliferation regulation, epithelial-mesenchymal transition (EMT), apoptosis, cell-cycle progression, angiogenesis, metastasis and invasion regulation, androgen-independent development, and colony formation. CONCLUSION The selected miRNA-based panel has the potential to be a guide for therapeutic decision making in the effective treatment of PCa.
Collapse
Affiliation(s)
- MariaYu Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Yang H, He C, Feng Y, Jin J. Exosome‑delivered miR‑486‑3p inhibits the progression of osteosarcoma via sponging CircKEAP1/MARCH1 axis components. Oncol Lett 2024; 27:24. [PMID: 38058466 PMCID: PMC10696630 DOI: 10.3892/ol.2023.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/26/2023] [Indexed: 12/08/2023] Open
Abstract
Accumulating evidence shows that the disruption of competing endogenous RNA (ceRNA) networks plays a significant role in osteosarcoma (OS) initiation and progression. However, the specific roles and functions of the ceRNAs in OS remain unclear. First, differentially expressed microRNAs (DEMs) were identified by mining the E-MTAB-1136 and GSE28423 datasets. MiRWalk website was used to predict the target gene of miRNA. OS-associated circular RNA (circRNA) expression profiles were downloaded from the published microarray databases. Gene expression levels were assessed through reverse transcription-quantitative PCR and western blotting. The biological effects of circKEAP1, microRNA (miR)-486-3p and membrane-associated RINGCH finger protein 1 (MARCH1) in OS cells were investigated using Cell Counting Kit-8, Transwell, colony formation and wound healing assays. miR-486-3p was aberrantly downregulated in OS tissues and cell lines and was packed with exosomes. miR-486-3p overexpression was shown to inhibit OS cell progression and promoted cell cycle arrest in vitro. In addition, MARCH1 was identified as a direct downstream molecule of miR-486-3p in OS cells. circKEAP1 was found to be upregulated in OS tissues and cells. circKEAP1 was found to have binding sites with miR-486-3p. Mechanistically, circKEAP1 positively regulated MARCH1 expression by sponging miR-486-3p. Exosomal miR-486-3p inhibited the progression of OS by sponging the circKEAP1/MARCH1 axis. These findings may provide a promising treatment approach for OS.
Collapse
Affiliation(s)
- Huidong Yang
- Department of Orthopedics, Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Department of Orthopedics, Wuhan University of Science and Technology School of Medicine, Wuhan, Hubei 430022, P.R. China
| | - Cheng He
- Department of Orthopedics, The 908th Hospital of Joint Logistics Support Forces of Chinese PLA, Nanchang, Jiangxi 330002, P.R. China
| | - Yi Feng
- Department of Orthopedics, Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jie Jin
- Department of Orthopedics, Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
7
|
Massa C, Seliger B. Combination of multiple omics techniques for a personalized therapy or treatment selection. Front Immunol 2023; 14:1258013. [PMID: 37828984 PMCID: PMC10565668 DOI: 10.3389/fimmu.2023.1258013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023] Open
Abstract
Despite targeted therapies and immunotherapies have revolutionized the treatment of cancer patients, only a limited number of patients have long-term responses. Moreover, due to differences within cancer patients in the tumor mutational burden, composition of the tumor microenvironment as well as of the peripheral immune system and microbiome, and in the development of immune escape mechanisms, there is no "one fit all" therapy. Thus, the treatment of patients must be personalized based on the specific molecular, immunologic and/or metabolic landscape of their tumor. In order to identify for each patient the best possible therapy, different approaches should be employed and combined. These include (i) the use of predictive biomarkers identified on large cohorts of patients with the same tumor type and (ii) the evaluation of the individual tumor with "omics"-based analyses as well as its ex vivo characterization for susceptibility to different therapies.
Collapse
Affiliation(s)
- Chiara Massa
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Barbara Seliger
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
8
|
Feng D, Li L, Shi X, Zhu W, Wang J, Wu R, Li D, Wei W, Han P. Identification of senescence-related lncRNA prognostic index correlating with prognosis and radiosensitivity in prostate cancer patients. Aging (Albany NY) 2023; 15:9358-9376. [PMID: 37742230 PMCID: PMC10564441 DOI: 10.18632/aging.204888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/22/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND An increasing number of studies are shown how crucial a role cellular senescence plays in tumor development. In this study, we developed a senescence-related lncRNA prognostic index (SRLPI) to forecast radiosensitivity and the probability of biochemical recurrence (BCR) in patients with prostate cancer (PCa). METHODS PCa cohorts in TCGA and GEO databases were downloaded. Senescence-and prognosis-related lncRNA with differential expression in tumor and normal samples were identified and used to establish the SRLPI score. Mutation landscape, function pathway, tumor stemness and heterogeneity and tumor immune microenvironment were also analyzed. We performed the analysis using R 3.6.3 and the appropriate tools. RESULTS A SRLPI score was constructed based on SNHG1 and MIAT in the TCGA cohort. Our classification of PCa patients into high- and low-risk groups was based on the median SRLPI score. When compared to the low-SRLPI group, the high-SRLPI group was more vulnerable to BCR (HR: 3.33). In terms of BCR-free survival and metastasis-free survival, the GSE116918 showed similar findings. Surprisingly, the SRLPI score demonstrated a high level of radiosensitivity for diagnosis (AUC: 0.98). Age, Gleason score, T stage, N stage, positive lymph nodes, and residual tumor were all significantly greater in patients with high SRLPI scores. Furthermore, this score was significantly related to markers of senescence. Protein secretion and androgen response were found to be substantially enriched in the low-SRLPI group, whereas E2F targets were found to be strongly enriched in the high-SRLPI group for pathway analysis. For the tumor microenvironment assessment, B cells, CD8+ T cells, immune score and TIDE score were positively related to SRLPI score while endothelial level was negatively associated with SRLPI score with statistical significance. CONCLUSIONS We developed a SRLPI score that was related to prognosis and radiosensitivity and might be helpful in clinical practice.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weizhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Azani A, Omran SP, Ghasrsaz H, Idani A, Eliaderani MK, Peirovi N, Dokhani N, Lotfalizadeh MH, Rezaei MM, Ghahfarokhi MS, KarkonShayan S, Hanjani PN, Kardaan Z, Navashenagh JG, Yousefi M, Abdolahi M, Salmaninejad A. MicroRNAs as biomarkers for early diagnosis, targeting and prognosis of prostate cancer. Pathol Res Pract 2023; 248:154618. [PMID: 37331185 DOI: 10.1016/j.prp.2023.154618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Globally, prostate cancer (PC) is leading cause of cancer-related mortality in men worldwide. Despite significant advances in the treatment and management of this disease, the cure rates for PC remains low, largely due to late detection. PC detection is mostly reliant on prostate-specific antigen (PSA) and digital rectal examination (DRE); however, due to the low positive predictive value of current diagnostics, there is an urgent need to identify new accurate biomarkers. Recent studies support the biological role of microRNAs (miRNAs) in the initiation and progression of PC, as well as their potential as novel biomarkers for patients' diagnosis, prognosis, and disease relapse. In the advanced stages, cancer-cell-derived small extracellular vesicles (SEVs) may constitute a significant part of circulating vesicles and cause detectable changes in the plasma vesicular miRNA profile. Recent computational model for the identification of miRNA biomarkers discussed. In addition, accumulating evidence indicates that miRNAs can be utilized to target PC cells. In this article, the current understanding of the role of microRNAs and exosomes in the pathogenesis and their significance in PC prognosis, early diagnosis, chemoresistance, and treatment are reviewed.
Collapse
Affiliation(s)
- Alireza Azani
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Parvizi Omran
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haniyeh Ghasrsaz
- Faculty of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Asra Idani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Niloufar Peirovi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Dokhani
- Student Research Committee, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | | | - Sepideh KarkonShayan
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Parisa Najari Hanjani
- Department of Genetics, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Zahra Kardaan
- Department of Cellular Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Abdolahi
- Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
10
|
Li J, Sun J, Liu Z, Zeng Z, Ouyang S, Zhang Z, Ma M, Kang W. The Roles of Non-Coding RNAs in Radiotherapy of Gastrointestinal Carcinoma. Front Cell Dev Biol 2022; 10:862563. [PMID: 35517505 PMCID: PMC9065280 DOI: 10.3389/fcell.2022.862563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy (RT), or radiation therapy, has been widely used in clinical practice for the treatment of local advanced gastrointestinal carcinoma. RT causes DNA double-strand breaks leading to cell cytotoxicity and indirectly damages tumor cells by activating downstream genes. Non-coding RNA (including microRNAs, long non-coding RNAs (ncRNAs), and circular RNAs) is a type of RNA that does not encode a protein. As the field of ncRNAs increasingly expands, new complex roles have gradually emerged for ncRNAs in RT. It has been shown that ncRNAs can act as radiosensitivity regulators in gastrointestinal carcinoma by affecting DNA damage repair, cell cycle arrest, irradiation-induced apoptosis, cell autophagy, stemness, EMT, and cell pyroptosis. Here, we review the complex roles of ncRNAs in RT and gastrointestinal carcinoma. We also discuss the potential clinical significance and predictive value of ncRNAs in response to RT for guiding the individualized treatment of patients. This review can serve as a guide for the application of ncRNAs as radiosensitivity enhancers, radioresistance inducers, and predictors of response in RT of gastrointestinal carcinoma.
Collapse
|
11
|
Hou X, Chang Y, Yue Y, Wang Z, Ding F, Li Z, Li H, Xu Y, Kong X, Huang F, Guo D, Liu J. Supramolecular Radiosensitizer Based on Hypoxia-Responsive Macrocycle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104349. [PMID: 34994113 PMCID: PMC8867162 DOI: 10.1002/advs.202104349] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Indexed: 05/15/2023]
Abstract
Radiotherapy (RT) has been viewed as one of the most effective and extensively applied curatives in clinical cancer therapy. However, the radioresistance of tumor severely discounts the radiotherapy outcomes. Here, an innovative supramolecular radiotherapy strategy, based on the complexation of a hypoxia-responsive macrocycle with small-molecule radiosensitizer, is reported. To exemplify this tactic, a carboxylated azocalix[4]arene (CAC4A) is devised as molecular container to quantitatively package tumor sensitizer banoxantrone dihydrochloride (AQ4N) through reversible host-guest interaction. Benefited from the selective reduction of azo functional groups under hypoxic microenvironment, the supramolecular prodrug CAC4A•AQ4N exhibits high tumor accumulation and efficient cellular internalization, thereby significantly amplifying radiation-mediated tumor destruction without appreciable systemic toxicity. More importantly, this supramolecular radiotherapy strategy achieves an ultrahigh sensitizer enhancement ratio (SER) value of 2.349, which is the supreme among currently reported noncovalent-based radiosensitization approach. Further development by applying different radiosensitizing drugs can make this supramolecular strategy become a general platform for boosting therapeutic effect in cancer radiotherapies, tremendously promising for clinical translation.
Collapse
Affiliation(s)
- Xiaoxue Hou
- CAMS Key Laboratory of Radiopharmacokinetics for Innovative DrugsInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Yu‐Xuan Chang
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Yu‐Xin Yue
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Ze‐Han Wang
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Fei Ding
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Zhi‐Hao Li
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Hua‐Bin Li
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Yicheng Xu
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Xianglei Kong
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Fan Huang
- CAMS Key Laboratory of Radiopharmacokinetics for Innovative DrugsInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Dong‐Sheng Guo
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Jianfeng Liu
- CAMS Key Laboratory of Radiopharmacokinetics for Innovative DrugsInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| |
Collapse
|
12
|
Liu Y, Ao X, Ji G, Zhang Y, Yu W, Wang J. Mechanisms of Action And Clinical Implications of MicroRNAs in the Drug Resistance of Gastric Cancer. Front Oncol 2021; 11:768918. [PMID: 34912714 PMCID: PMC8667691 DOI: 10.3389/fonc.2021.768918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors of digestive systems worldwide, with high recurrence and mortality. Chemotherapy is still the standard treatment option for GC and can effectively improve the survival and life quality of GC patients. However, with the emergence of drug resistance, the clinical application of chemotherapeutic agents has been seriously restricted in GC patients. Although the mechanisms of drug resistance have been broadly investigated, they are still largely unknown. MicroRNAs (miRNAs) are a large group of small non-coding RNAs (ncRNAs) widely involved in the occurrence and progression of many cancer types, including GC. An increasing amount of evidence suggests that miRNAs may play crucial roles in the development of drug resistance by regulating some drug resistance-related proteins as well as gene expression. Some also exhibit great potential as novel biomarkers for predicting drug response to chemotherapy and therapeutic targets for GC patients. In this review, we systematically summarize recent advances in miRNAs and focus on their molecular mechanisms in the development of drug resistance in GC progression. We also highlight the potential of drug resistance-related miRNAs as biomarkers and therapeutic targets for GC patients.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China.,School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Guoqiang Ji
- Clinical Laboratory, Linqu People's Hospital, Linqu, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Konoshenko M, Laktionov P. The miRNAs involved in prostate cancer chemotherapy response as chemoresistance and chemosensitivity predictors. Andrology 2021; 10:51-71. [PMID: 34333834 DOI: 10.1111/andr.13086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Reliable molecular markers that allow the rational prescription of an effective chemotherapy type for each prostate cancer patient are still needed. Since microRNAs expression is associated with the response to different types of prostate cancer therapy, microRNAs represent a pool of perspective markers of therapy effectiveness comprising chemotherapy. OBJECTIVES The available data on microRNAs associated with chemotherapy response (resistance and sensitivity) are summarized and analyzed in the article. MATERIALS AND METHODS A review of the published data, as well as their analysis by current bioinformatics resources, was conducted. The molecular targets of microRNAs, as well as the reciprocal relationships between the microRNAs and their targets, were studied using the DIANA, STRING, and TransmiR databases. Special attention was dedicated to the mechanisms of prostate cancer chemoresistance development. RESULTS AND DISCUSSION The combined analysis of bioinformatics resources and the available literature indicated that the expression of eight microRNAs that are associated with different responses to chemotherapy have a high potential for the prediction of the prostate cancer chemotherapy response, as found in the experiments and confirmed by the functions of regulated genes. CONCLUSION An overview on the published data and bioinformatics resources, with respect to predictive microRNA markers of chemotherapy response, is presented in this review. The selected microRNA and gene panel has a high potential for predicting the chemosensitivity or chemoresistance of prostate cancer and could represent a set of markers for subsequent study using samples of cell-free microRNAs from different patient groups.
Collapse
Affiliation(s)
- Maria Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
14
|
Extracellular Vesicles-Mediated Transfer of miRNA Let-7b from PC3 Cells to Macrophages. Genes (Basel) 2020; 11:genes11121495. [PMID: 33322720 PMCID: PMC7763145 DOI: 10.3390/genes11121495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Prostate-derived extracellular vesicles (pEVs) may represent a way to selectively transport cargo molecules from the producing cells to the target cells to allow biological events, both in physiological and pathological circumstances. pEVs cargo participates in the modulation of the inflammatory responses in physiological conditions and during cancer progression. In the present study, we examined the expression levels of miRNA Let-7b, in both precursor and mature forms, in noncancerous and cancerous prostate cell lines, PNT2 and PC3 respectively, and in their extracellular vesicles (EVs) using reverse-transcription quantitative PCR strategies. We showed that miRNA Let-7b was highly expressed in noncancerous cells and strongly decreased in cancerous PC3 cells, while the opposite was observed in the respective EVs, thus supporting the tumor suppressor role of miRNA Let7-b. We also demonstrated that miRNA Let-7b can be transferred to THP-1 cells via EVs, which are known to induce TAM-like polarization. Our results support the view that miRNA Let-7 b, contained in PC3-derived EVs, is associated with the increase in the miRNA Let7-b observed in TAM-like macrophages. Overall, our results indicate that circulating EV-loaded miRNA might be useful biomarkers for prostate cancer progression and might also support a possible use of pEVs as targets for prostate cancer therapy.
Collapse
|