1
|
Michałek K, Grabowska M, Oberska P, Gączarzewicz D, Syczewski A, Tripon SC, Barbu-Tudoran L, Suciu M. Ultrastructure of the Bovine Testis in Cattle ( Bos taurus): New View. Animals (Basel) 2024; 14:1777. [PMID: 38929396 PMCID: PMC11201160 DOI: 10.3390/ani14121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The purpose of this study was to analyze the ultrastructure of the testes of sexually immature calves and reproductive bulls of the Polish Holstein-Friesian Black-and-White breed. Utilizing TEM, this study identified three distinct stages of seminiferous tubule development in calves, characterized by varying shapes, distributions, and arrangements of individual cells. In immature animals, early developing spermatocytes, prespermatogonia, and pre-Sertoli cells were observed within the seminiferous tubules. In sexually mature bulls, all cells of the spermatogenic series were observed, situated on a thin, multilayered basal lamina, which forms characteristic undulations. An abundant smooth endoplasmic reticulum was observed in the cytoplasm of spermatogonia in both groups of animals, forming characteristic membranous swirls. In adult bulls, spermatogonia maintain contact with each other through numerous cytoplasmic bridges and cell connections, forming small spaces with visible microvilli between them. The ultrastructural analysis facilitated the identification of morphological changes occurring during the maturation of pre-Sertoli cells, transitioning from a large euchromatic nucleus to a nucleus in which the formation of characteristic vesicles and tubules could be observed. It should also be emphasized that two types of Sertoli cells, namely dark and light electron-dense cells, can be found in cattle. These cells differ from each other, indicating that they may perform different functions. The widespread recognition of the presence of two types of Sertoli cells in cattle will undoubtedly contribute to a better understanding of the processes occurring within the testes and provide a basis for further research in this area.
Collapse
Affiliation(s)
- Katarzyna Michałek
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland;
| | - Patrycja Oberska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | - Dariusz Gączarzewicz
- Department of Animal Reproduction, Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | | | - Septimiu Cassian Tripon
- Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania; (S.C.T.); (L.B.-T.); (M.S.)
| | - Lucian Barbu-Tudoran
- Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania; (S.C.T.); (L.B.-T.); (M.S.)
| | - Maria Suciu
- Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania; (S.C.T.); (L.B.-T.); (M.S.)
| |
Collapse
|
2
|
Oberska P, Grabowska M, Marynowska M, Murawski M, Gączarzewicz D, Syczewski A, Michałek K. Cellular Distribution of Aquaporin 3, 7 and 9 in the Male Reproductive System: A Lesson from Bovine Study ( Bos taurus). Int J Mol Sci 2024; 25:1567. [PMID: 38338845 PMCID: PMC10855163 DOI: 10.3390/ijms25031567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The increasing incidence of male infertility in humans and animals creates the need to search for new factors that significantly affect the course of reproductive processes. Therefore, the aim of this study was to determine the temporospatial expression of aquaglyceroporins (AQP3, AQP7 and AQP9) in the bovine (Bos taurus) reproductive system using immunohistochemistry and Western blotting. The study also included morphological analysis and identification of GATA-4. In brief, in immature individuals, AQP3 and AQP7 were found in gonocytes. In reproductive bulls, AQP3 was observed in spermatocytes and spermatogonia, while AQP7 was visible in all germ cells and the Sertoli cells. AQP7 and AQP9 were detected in the Leydig cells. Along the entire epididymis of reproductive bulls, aquaglyceroporins were visible, among others, in basal cells (AQP3 and AQP7), in epididymal sperm (AQP7) and in the stereocilia of the principal cells (AQP9). In males of all ages, aquaglyceroporins were identified in the principal and basal cells of the vas deferens. An increase in the expression of AQP3 in the testis and cauda epididymis and a decrease in the abundance of AQP7 in the vas deferens with age were found. In conclusion, age-related changes in the expression and/or distribution patterns of AQP3, AQP7 and AQP9 indicate the involvement of these proteins in the normal development and course of male reproductive processes in cattle.
Collapse
Affiliation(s)
- Patrycja Oberska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (P.O.); (M.M.)
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland;
| | - Marta Marynowska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (P.O.); (M.M.)
| | - Maciej Murawski
- Department of Nutrition, Animal Biotechnology and Fisheries, University of Agriculture in Krakow, 24/28 Mickiewicza Avenue, 30-059 Cracow, Poland;
| | - Dariusz Gączarzewicz
- Department of Animal Reproduction, Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | | | - Katarzyna Michałek
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (P.O.); (M.M.)
| |
Collapse
|