1
|
Fossmo HL, Ørstavik K, Frich JC, Robinson HS. Translation, reliability, and validity of the Norwegian version of the ABILHAND-NMD and the ACTIVLIM for Myotonic Dystrophy type 1. Disabil Rehabil 2024; 46:2699-2707. [PMID: 37438996 DOI: 10.1080/09638288.2023.2231848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE To translate ABILHAND-NMD and ACTIVLIM into Norwegian and assess their psychometric properties in adults with Myotonic Dystrophy type 1(DM1). METHODS ABILHAND-NMD and ACTIVLIM were translated into Norwegian through a standardized translation process. Psychometric properties of the translated questionnaires were tested. Intraclass correlation coefficient (ICC3.1) was used to assess test-retest reliability and Cronbach's α for internal consistency. The validity of the questionnaires was also assessed. RESULTS A total of 39 adults with DM1 were included. We found excellent test-retest reliability on ABILHAND-NMD (ICC 0.91) and ACTIVLIM (ICC 0.93). We found a good internal consistency of ABILHAND-NMD with Cronbach's α (95%CI) of 0.80 (0.69-0.88) and ACTIVLIM with Cronbach's α (95%CI) of 0.88 (0.82-0.93) An expert group of healthcare professionals and a pilot group reported good face and content validity. We found a high correlation between ABILHAND-NMD and ACTIVLIM (r = 0.75), p < 0.001 implying good convergent validity. ABILHAND-NMD and ACTIVLIM showed no floor effect, but a potential for ceiling effect. CONCLUSION The Norwegian versions of ABILHAND-NMD and ACTIVLIM are reliable and valid patient reported outcome measures for Myotonic Dystrophy type 1. The questionnaires are easy to administer as they take a short time to answer, and the participants reported no problems understanding the questions.
Collapse
Affiliation(s)
- Hanne Ludt Fossmo
- Neurological Department, EMAN, Oslo University Hospital, Oslo, Norway
- Vikersund Kurbad AS, Vikersund Rehabilitation Centre, Vikersund, Norway
- Member of ERN EURO-NMD
| | - Kristin Ørstavik
- Neurological Department, EMAN, Oslo University Hospital, Oslo, Norway
- Member of ERN EURO-NMD
| | - Jan C Frich
- Department of Health Management and Health Economics, University of Oslo, Institute of Health and Society, Oslo, Norway
| | - Hilde Stendal Robinson
- Department of Interdisciplinary Health Sciences, University of Oslo, Institute of Health and Society, Oslo, Norway
| |
Collapse
|
2
|
Ørstavik K, Solbakken G, Rasmussen M, Sanaker PS, Fossmo HL, Bryne E, Knutsen-Øy T, Elgsås T, Heiberg A. Myotonic dystrophy type 1 - a multiorgan disorder. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2024; 144:23-0687. [PMID: 38651711 DOI: 10.4045/tidsskr.23.0687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Myotonic dystrophy type 1 is an autosomal dominant, inherited multiorgan disorder that can affect people of all ages. It is the most prevalent inherited muscular disease in adults. Late diagnosis points to limited knowledge among the medical community that symptoms other than typical muscular symptoms can dominate. The condition often worsens with each generation and some families are severely affected. Significantly delayed diagnosis means a risk of more serious development of the disorder and inadequate symptomatic treatment. We hope that this clinical review article may lead to more rapid diagnosis and better follow-up of this patient group.
Collapse
Affiliation(s)
- Kristin Ørstavik
- Seksjon for sjeldne nevromuskulære tilstander, Oslo universitetssykehus, og, Enhet for medfødte og arvelige nevromuskulære tilstander, Oslo universitetssykehus, Rikshospitalet
| | - Gro Solbakken
- Avdeling for nevrologi, revmatologi og rehabilitering, Drammen sykehus, Vestre Viken
| | - Magnhild Rasmussen
- Barneavdeling for nevrofag, Oslo universitetssykehus, og, Enhet for medfødte og arvelige nevromuskulære tilstander, Oslo universitetssykehus, Rikshospitalet
| | | | - Hanne Ludt Fossmo
- Enhet for medfødte og arvelige nevromuskulære tilstander, Oslo universitetssykehus, Rikshospitalet, og, Vikersund Kurbad
| | - Einar Bryne
- Barnehabiliteringen, Sykehuset i Vestfold, Tønsberg
| | | | | | | |
Collapse
|
3
|
Sobierajska-Rek A, Jabłońska-Brudło J, Dąbrowska A, Wojnicz W, Meyer-Szary J, Wierzba J. Timed rolling and rising tests in Duchenne muscular dystrophy ambulant boys: a feasibility study. Minerva Pediatr (Torino) 2024; 76:208-216. [PMID: 38639735 DOI: 10.23736/s2724-5276.21.05977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
BACKGROUND Functional activities are extensively used in motor assessments of patients with Duchenne muscular dystrophy. The role of timed items has been reported as an early prognostic factor for disease progression. However, there are two functional activities that are not widely assessed in clinical practice among Duchenne muscular dystrophy patients: rolling and bed rising. This study aimed to investigate whether the 360-degree roll (roll) and supine to sit-to-edge (bed rise) measurements are feasible tools reflecting the functional status of ambulatory DMD children by establishing possible correlations between validated measures: the Vignos Scale (VS), timed rise from floor and the 6-Minute Walk Test (6MWT). METHODS A total of 32 ambulant boys with DMD were assessed using timed items, the 6MWT and VS. RESULTS The roll and bed rise are correlated with each other. The 6MWT, the floor rise and VS are correlated with the roll and with the bed rise. CONCLUSIONS Findings offer preliminary empirical evidence addressing feasibility and safety of roll and bed rise measurements. There is a potential clinical utility of these tests in assessing functional status of DMD ambulant patients.
Collapse
Affiliation(s)
- Agnieszka Sobierajska-Rek
- Department of Rehabilitation Medicine, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland -
| | - Joanna Jabłońska-Brudło
- Department of Rehabilitation Medicine, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Aneta Dąbrowska
- Department of Rehabilitation Medicine, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Wiktoria Wojnicz
- Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gdansk, Poland
| | - Jarosław Meyer-Szary
- Department of Pediatric Cardiology and Congenital Heart Defects, Medical University of Gdansk, Gdansk, Poland
| | - Jolanta Wierzba
- Department of Pediatric and Internal Nursing, Institute of Nursing and Midwifery, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
4
|
Hadouiri N, Fournel I, Thauvin-Robinet C, Jacquin-Piques A, Ornetti P, Gueugnon M. Walking test outcomes in adults with genetic neuromuscular diseases: a systematic literature review of their measurement properties. Eur J Phys Rehabil Med 2024; 60:257-269. [PMID: 38300152 PMCID: PMC11114158 DOI: 10.23736/s1973-9087.24.08095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Neuromuscular diseases (NMDs) include a large group of heterogeneous diseases. NMDs frequently involve gait disorders, which affect quality of life. Several walking tests and tools have been described in the literature, but there is no consensus regarding the use of walking tests and tools in NMDs or of their measurement properties for walking outcomes. The aim of this review is to present an overview of walking tests, including their measurement properties when used in adults with inherited or genetic NMDs. The aim is to help clinicians and researchers choose the most appropriate test for their objective. EVIDENCE ACQUISITION A systematic review was conducted after consulting MEDLINE (via PubMed), EMBASE, Science direct, Google Scholar and Cochrane Central Register of Controlled Trials databases for published studies in which walking outcome measurement properties were assessed. The validity, reliability, measurement error and responsiveness properties were evaluated in terms of statistical methods and methodological design qualities using the COnsensus-based Standards for the selection of health Measurement Instruments (COSMIN) guidelines. EVIDENCE SYNTHESIS We included 46 studies in NMDs. These studies included 15 different walking tests and a wide variety of walking outcomes, assessed with six types of walking tools. Overall, the 6MWT was the most studied test in terms of measurement properties. The methodological design and statistical methods of most studies evaluating construct validity, reliability and measurement error were "very good." The majority of outcome measurements were valid and reliable. However, studies on responsiveness as minimal important difference or minimal important change were lacking or were found to have inadequate methodological and statistical methods according to the COSMIN guidelines. CONCLUSIONS Most walking outcomes were found to be valid and reliable in NMDs. However, in view of the growing number of clinical trials, further studies are needed to clarify additional measurement properties.
Collapse
Affiliation(s)
- Nawale Hadouiri
- Department of Physical Medicine and Rehabilitation, Dijon-Bourgogne University Hospital, Dijon, France -
- UMR-Inserm 1231, Génétique des Anomalies du Développement (GAD), Bourgogne Franche-Comté University, Dijon, France -
- INSERM, CIC 1432, Clinical Investigation Center, Plurithematic Module, Technological Investigation Platform, Dijon-Bourgogne University Hospital, Dijon, France -
| | - Isabelle Fournel
- Clinical Investigation Center, CHU Dijon, Dijon, France
- INSERM, CIC 1432, Module Epidémiologie Clinique, Dijon, France
| | - Christel Thauvin-Robinet
- UMR-Inserm 1231, Génétique des Anomalies du Développement (GAD), Bourgogne Franche-Comté University, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), CHU Dijon Bourgogne, Dijon, France
- Centre de Référence Maladies Rares "Maladies neurogénétiques", CHU Dijon Bourgogne, Dijon, France
| | - Agnès Jacquin-Piques
- Centre de Compétences Maladies Rares "Maladies neuromusculaires", Department of Neurology, Dijon University Hospital, Dijon, France
| | - Paul Ornetti
- Department of Rheumatology, Dijon-Bourgogne University Hospital, Dijon, France
- INSERM, UMR1093-CAPS, Bourgogne Franche-Comté University, Dijon, France
| | - Mathieu Gueugnon
- INSERM, CIC 1432, Clinical Investigation Center, Plurithematic Module, Technological Investigation Platform, Dijon-Bourgogne University Hospital, Dijon, France
- INSERM, UMR1093-CAPS, Bourgogne Franche-Comté University, Dijon, France
| |
Collapse
|
5
|
Solbakken G, Løseth S, Frich JC, Dietrichs E, Ørstavik K. Small and large fiber neuropathy in adults with myotonic dystrophy type 1. Front Neurol 2024; 15:1375218. [PMID: 38504800 PMCID: PMC10949405 DOI: 10.3389/fneur.2024.1375218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Myotonic dystrophy type 1 (DM1) is an inherited neuromuscular disorder that affects multiple organs. In this study, we investigated symptoms of pain and presence of small and large fiber neuropathy in the juvenile and adult form of DM1. Method Twenty genetically verified DM1 patients were included. Pain was assessed, and neurological examination and investigations of the peripheral nervous system by quantification of small nerve fibers in skin biopsy, quantitative sensory testing and nerve conduction studies were performed. Results from skin biopsies were compared to healthy controls. Result Seventeen patients reported chronic pain. Large and/or small fiber abnormalities were present in 50% of the patients. The intraepidermal nerve fiber density was significantly lower in the whole group of patients compared to healthy controls. Conclusion Small-fiber neuropathy might be an important cause of pain in DM1.
Collapse
Affiliation(s)
- Gro Solbakken
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Rheumatology and Rehabilitation, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Sissel Løseth
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Section of Clinical Neurophysiology, University Hospital of North Norway, Tromsø, Norway
| | - Jan C. Frich
- Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Espen Dietrichs
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
6
|
Mateus T, Costa A, Viegas D, Marques A, Herdeiro MT, Rebelo S. Outcome measures frequently used to assess muscle strength in patients with myotonic dystrophy type 1: a systematic review. Neuromuscul Disord 2021; 32:99-115. [PMID: 35031191 DOI: 10.1016/j.nmd.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Measurement of muscle strength is fundamental for the management of patients with myotonic dystrophy type 1 (DM1). Nevertheless, guidance on this topic is somewhat limited due to heterogeneous outcome measures used. This systematic literature review aimed to summarize the most frequent outcome measures to assess muscle strength in patients with DM1. We searched on Pubmed, Web of Science and Embase databases. Observational studies using measures of muscle strength assessment in adult patients with DM1 were included. From a total of 80 included studies, 24 measured cardiac, 45 skeletal and 23 respiratory muscle strength. The most common method and outcome measures used to assess cardiac muscle strength were echocardiography and ejection fraction, for skeletal muscle strength were quantitative muscle test, manual muscle test and maximum isometric torque and medical research council and for respiratory muscle strength were manometry and maximal inspiratory and expiratory pressure. We successfully gathered the more consensual methods and measures to evaluate muscle strength in future clinical studies, particularly to test muscle strength response to treatments in patients with DM1. Future consensus on a set of measures to evaluate muscle strength (core outcome set), is important for these patients.
Collapse
Affiliation(s)
- Tiago Mateus
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro 3810-193, Portugal
| | - Adriana Costa
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro 3810-193, Portugal
| | - Diana Viegas
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro 3810-193, Portugal
| | - Alda Marques
- Respiratory Research and Rehabilitation Laboratory - Lab3R, Institute of Biomedicine (iBiMED), School of Health Sciences (ESSUA), University of Aveiro, Aveiro, Portugal
| | - Maria Teresa Herdeiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro 3810-193, Portugal
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
7
|
Solbakken G, Løseth S, Froholdt A, Eikeland TD, Nærland T, Frich JC, Dietrichs E, Ørstavik K. Pain in adult myotonic dystrophy type 1: relation to function and gender. BMC Neurol 2021; 21:101. [PMID: 33663406 PMCID: PMC7931522 DOI: 10.1186/s12883-021-02124-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/16/2021] [Indexed: 12/02/2022] Open
Abstract
Background Pain is prevalent in myotonic dystrophy 1 (DM1). This study investigated whether CTG repeat size, disease duration, BMI and motor and psychological function were related to pain in adult patients with DM1, and if there were gender differences regarding intensity and location of pain. Method Cross-sectional design. Pain was investigated in 50 genetically confirmed DM1 patients by combining clinical assessment and self-reports of pain intensity and locations. Pain scoring results were related to CTG size, disease duration, muscle strength, walking capacity measured by 6-min walk test, activity of daily life by Katz ADL Index, respiratory function by Forced Vital Capacity and BMI. In addition, the degree of reported pain was related to Quality of life measured by WHOQOL-BREF; fatigue was measured by Fatigue severity scale; psychological functions were measured by Beck Depression Inventory, Beck Anxiety Inventory, IQ and Autism spectrum Quotient. Results Pain was reported in 84% of the patients and was significantly correlated with CTG size (r = 0.28 p = 0.050), disease duration (r = 0.38 p = 0.007), quality of life (r = − 0.37 p = 0.009), fatigue (r = 0.33 p = 0.02) and forced vital capacity (r = − 0.51, p = 0.005). Significant gender differences, with higher scores for females, were documented. In male subjects the number of pain locations was significantly correlated with quality of life and the autism quotient. In females, pain intensity was significantly correlated with activity, respiratory function and BMI. Conclusions Pain in DM1 was prevalent, with a strong association to lung function and other aspects of the disease. Significant gender differences were present for pain intensity and number of pain locations. How pain was related to other symptoms differed between male and female subjects. Our findings highlight the importance of assessments of pain in DM1 patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02124-9.
Collapse
Affiliation(s)
- Gro Solbakken
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Neurology, Rheumatology and Rehabilitation, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway.
| | - Sissel Løseth
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway.,Section of Clinical Neurophysiology, University Hospital of North Norway, Tromsø, Norway
| | - Anne Froholdt
- Department of Neurology, Rheumatology and Rehabilitation, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Torunn D Eikeland
- Department of Neurology, Rheumatology and Rehabilitation, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Terje Nærland
- K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Jan C Frich
- Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Espen Dietrichs
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
8
|
Jimenez-Moreno AC, Nikolenko N, Kierkegaard M, Blain AP, Newman J, Massey C, Moat D, Sodhi J, Atalaia A, Gorman GS, Turner C, Lochmüller H. Analysis of the functional capacity outcome measures for myotonic dystrophy. Ann Clin Transl Neurol 2019; 6:1487-1497. [PMID: 31402614 PMCID: PMC6689676 DOI: 10.1002/acn3.50845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/11/2019] [Accepted: 06/26/2019] [Indexed: 11/30/2022] Open
Abstract
Objectives Defining clinically relevant outcome measures for myotonic dystrophy type 1 (DM1) that can be valid and feasible for different phenotypes has proven problematic. The Outcome Measures for Myotonic Dystrophy (OMMYD) group proposed a battery of functional outcomes: 6‐minute walk test, 30 seconds sit and stand test, timed 10 m walk test, timed 10 m walk/run test, and nine‐hole peg test. This, however, required a large‐scale investigation, Methods A cohort of 213 patients enrolled in the natural history study, PhenoDM1, was analyzed in cross‐sectional analysis and subsequently 98 patients were followed for longitudinal analysis. We aimed to assess: (1) feasibility and best practice; (2) intra‐session reliability; (3) validity; and (4) behavior over time, of these tests. Results OMMYD outcomes proved feasible as 96% of the participants completed at least one trial for all tests and more than half (n = 113) performed all three trials of each test. Body mass index and disease severity associate with functional capacity. There was a significant difference between the first and second trials of each test. There was a moderate to strong correlation between these functional outcomes and muscle strength, disease severity and patient‐reported outcomes. All outcomes after 1 year detected a change in functional capacity except the nine‐hole peg test. Conclusions These tests can be used as a battery of outcomes or independently based on the shown overlapping psychometric features and strong cross‐correlations. Due to the large and heterogeneous sample of this study, these results can serve as reference values for future studies.
Collapse
Affiliation(s)
- Aura Cecilia Jimenez-Moreno
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Welcome Trust Mitochondrial Research Centre, Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Nikoletta Nikolenko
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Marie Kierkegaard
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Functional Area Occupational Therapy & Physiotherapy, Allied Health Professionals Function, Karolinska University Hospital, Stockholm, Sweden
| | - Alasdair P Blain
- Welcome Trust Mitochondrial Research Centre, Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jane Newman
- Welcome Trust Mitochondrial Research Centre, Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charlotte Massey
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Dionne Moat
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jas Sodhi
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Antonio Atalaia
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Center of Research in Myology, Sorbonne Université, Paris, France
| | - Grainne S Gorman
- Welcome Trust Mitochondrial Research Centre, Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Chris Turner
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Research Institute, The Children's Hospital of Eastern Ontario, Ottawa, Canada.,Division of Neurology, Department of Medicine, Ottawa University, Ottawa, Canada
| |
Collapse
|
9
|
Solbakken G, Bjørnarå B, Kirkhus E, Nguyen B, Hansen G, Frich JC, Ørstavik K. MRI of trunk muscles and motor and respiratory function in patients with myotonic dystrophy type 1. BMC Neurol 2019; 19:135. [PMID: 31216995 PMCID: PMC6582475 DOI: 10.1186/s12883-019-1357-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
Background Myotonic Dystrophy 1 (DM1) causes progressive myopathy of extremity muscles. DM1 may also affect muscles of the trunk. The aim of this study was to investigate fat infiltration and muscle size in trunk muscles in DM1 patients, and in an age and gender matched control group. Further, explore how fat infiltration and degree of atrophy in these muscles are associated with motor and respiratory function in DM1 patients. Method We measured fat infiltration and trunk muscle size by MRI in 20 patients with genetically confirmed classic form of DM1, and compared these cases with 20 healthy, age and gender matched controls. In the DM1 group, we investigated correlations between MRI findings and clinical measures of muscle strength, mobility and respiration. We used sum scores for fat infiltration and muscle size in trunk flexors and trunk extensors in the analysis of group differences and correlations. Results Significant differences between cases and controls were present for fat infiltration in trunk flexors (p = 0.001) and trunk extensors (p = < 0.001), and for muscle size in trunk flexors (p = 0.002) and trunk extensors (p = 0.030). Fat infiltration in trunk flexors were significant correlated to back extension strength (rho = − 0.523 p = 0.018), while muscle size in trunk flexors was significantly correlated to trunk flexion strength (rho = 0.506 p = 0.023). Fat infiltration in trunk flexors was significantly correlated with lower general mobility (rho = − 0.628, p = 0.003), reduced balance (rho = 0.630, p < 0.003) and forced vital capacity (rho − 0.487 p = 0.040). Conclusions Trunk muscles in DM1 patients had significant higher levels of fat infiltration and reduced muscle size compared to age and gender matched controls. In DM1 patients, fat infiltration was associated with reduced muscle strength, mobility, balance and lung function, while muscle size was associated with reduced muscle strength and lung function. These findings are of importance for clinical management of the disease and could be useful additional outcome measures in future intervention studies. Electronic supplementary material The online version of this article (10.1186/s12883-019-1357-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gro Solbakken
- Department of Neurology, Rheumatology and Rehabilitation, Drammen Hospital Vestre Viken Hospital Trust, P.O. Box 800, 3004, Drammen, Norway. .,Institute of Clinical Medicine University of Oslo, P.O. Box 1171 Blindern, 0318, Oslo, Norway.
| | - Bård Bjørnarå
- Department of Diagnostic Imaging, Drammen Hospital, Vestre Viken Hospital Trust, P.O. Box 800, 3004, Drammen, Norway
| | - Eva Kirkhus
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, Oslo. P.O. Box 4950 Nydalen, N-0424, Oslo, Norway
| | - Bac Nguyen
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, Oslo. P.O. Box 4950 Nydalen, N-0424, Oslo, Norway
| | - Gunnar Hansen
- Department of Neurology, Rheumatology and Rehabilitation, Drammen Hospital Vestre Viken Hospital Trust, P.O. Box 800, 3004, Drammen, Norway
| | - Jan C Frich
- Faculty of Medicine, University of Oslo, P.O. Box 1130 Blindern, 0318, Oslo, Oslo, Norway
| | - Kristin Ørstavik
- Department of Neurology, Section for Rare Neuromuscular Disorders, Oslo University Hospital, Oslo. P.O. Box 4950 Nydalen, N-0424, Oslo, Norway
| |
Collapse
|
10
|
Esnault J, Missaoui B, Bendaya S, Mane M, Eymard B, Laforet P, Stojkovic T, Behin A, Thoumie P. Isokinetic assessment of trunk muscles in facioscapulohumeral muscular dystrophy type 1 patients. Neuromuscul Disord 2018; 28:996-1002. [PMID: 30415787 DOI: 10.1016/j.nmd.2018.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
Facioscapulohumeral muscular dystrophy type 1 is the third most common inherited myopathy. Its severity is proportionate to the loss of microsatellite D4Z4 repetitions, which are below 10. Patients suffer from weakness in facial muscles, shoulder girdles and ankle dorsiflexors. Trunk impairment is reported in few studies. To assess correlation between D4Z4 number of repetitions in facioscapulohumeral muscular dystrophy type 1 patients and trunk extensors and flexors isokinetic peak torque, 48 patients with southern Blot confirmed facioscapulohumeral muscular dystrophy type 1 were enrolled to perform clinical evaluation (Ricci's Clinical Severity Scoring, Berg Balance Scale, Functional Reach Test, timed up-and-go test, six-minute walk test, functional independence measure) and trunk isokinetic assessment. Trunk extensors and flexors isokinetic peak torque at 60°/sec were significantly correlated with number of D4Z4 microsatellite repetitions, sex, weight and age-independent (r = 0.391 [0.121; 0.662], p < 0.006 and r = 0.334 [0.028; 0.641], p < 0.033, respectively). Ricci's Clinical Severity Scoring was significantly correlated to trunk extensors isokinetic peak torque at 60°/sec, sex and weight-independent (r = -0.743 [-0.938; -0.548], p < 0.0001). This study demonstrates moderate correlation between pathologic compression of D4Z4 microsatellite array and trunk extensors isokinetic strength among facioscapulohumeral muscular dystrophy type I patients.
Collapse
Affiliation(s)
- Julien Esnault
- Hôpital Rothschild, Service de Reeducation Neuro-orthopédique, 5 Rue Santerre 75012 Paris, France.
| | - Besma Missaoui
- Hôpital Rothschild, Service de Reeducation Neuro-orthopédique, 5 Rue Santerre 75012 Paris, France
| | - Samy Bendaya
- Hôpital Rothschild, Service de Reeducation Neuro-orthopédique, 5 Rue Santerre 75012 Paris, France
| | - Michele Mane
- Hôpital Rothschild, Service de Reeducation Neuro-orthopédique, 5 Rue Santerre 75012 Paris, France
| | - Bruno Eymard
- Hôpital Pitié-Salpêtrière, Institut de Myologie, 47-83 Boulevard de l'Hôpital 75013 Paris, France
| | - Pascal Laforet
- Hôpital Pitié-Salpêtrière, Institut de Myologie, 47-83 Boulevard de l'Hôpital 75013 Paris, France
| | - Tanya Stojkovic
- Hôpital Pitié-Salpêtrière, Institut de Myologie, 47-83 Boulevard de l'Hôpital 75013 Paris, France
| | - Anthony Behin
- Hôpital Pitié-Salpêtrière, Institut de Myologie, 47-83 Boulevard de l'Hôpital 75013 Paris, France
| | - Philippe Thoumie
- Hôpital Rothschild, Service de Reeducation Neuro-orthopédique, 5 Rue Santerre 75012 Paris, France
| |
Collapse
|
11
|
Park D, Lee SH, Shin JH, Park JS. Lower limb muscle magnetic resonance imaging in myotonic dystrophy type 1 correlates with the six-minute walk test and CTG repeats. Neuromuscul Disord 2018; 28:29-37. [DOI: 10.1016/j.nmd.2017.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 08/04/2017] [Accepted: 08/17/2017] [Indexed: 01/08/2023]
|
12
|
Park D, Park JS. Quantitative Assessment of Trunk Muscles Involvement in Patients with Myotonic Dystrophy Type 1 Using a Whole Body Muscle Magnetic Resonance Imaging. Eur Neurol 2017; 77:238-245. [PMID: 28288466 DOI: 10.1159/000460291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/02/2017] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The aim of this study was to analyze the pattern of trunk muscles involvement through a muscle MRI, in relation to the clinical data of patients diagnosed with myotonic dystrophy type 1 (DM1). MATERIALS AND METHODS Patients with DM1 who visited the neurology department were enrolled (n = 19). In all patients, the fatty degeneration of the muscle MRI in the lower cervical, upper thoracic, middle thoracic, and lumbosacral spine extensor muscle group and trunk flexor muscle group was evaluated. Clinical data, including CTG repeats, spinal deformity were analyzed to find the correlations with the fatty degeneration of trunk muscles in the muscle MRI. RESULTS All DM1 patients who presented with very mild to severe functional status showed T1-weghted high intensity signals in the upper-thoracic spine extensor muscle group. The sum MRI score of the spine extensor muscle group showed a significant correlation with the 6-min walking test, and Cobb's angle. CONCLUSIONS DM1 frequently affects the trunk muscles, even in the early stage of disease progression, regardless of disease severity or age of onset. Among the para-vertebral muscles, the selective involvement of spine extensor muscles may explain the cause of spinal deformities, which mirrors the functional status of DM1.
Collapse
Affiliation(s)
- Donghwi Park
- Department of Rehabilitation Medicine, Daegu Fatima Hospital, Daegu, South Korea
| | | |
Collapse
|