1
|
Itamura S, Sasaki K, Okano R. [An adult case of Dravet syndrome in which seizures worsened after discontinuation of lamotrigine and administration of stiripentol]. Rinsho Shinkeigaku 2025; 65:146-149. [PMID: 39864869 DOI: 10.5692/clinicalneurol.cn-002000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The patient was a 21-year-old female. She had frequently had status seizures when she had a fever or while taking a bath since she was 6 months old. At 1 year and 8 months old, she developed epilepsy. She was treated with multiple antiepileptic drugs, but her condition was intractable. At the age of 3, the patient suffered from acute encephalopathy, which was complicated by severe psychomotor developmental retardation. Tonic seizures continued to occur on a daily basis even after school age, but they did not worsen even during periods of fever, and the patient was not hospitalized until the age of 8. At the age of 19, the diagnosis was revised and Dravet syndrome was diagnosed. Lamotrigine, which had been taken at the time of diagnosis, was discontinued and stiripentol was administered, but the seizure frequency worsened. Because of the pathology of Dravet syndrome in adults may differ from that in children, care must be taken when selecting antiepileptic drugs.
Collapse
Affiliation(s)
- Shinji Itamura
- Department of Pediatrics, Hiroshima City Funairi Citizens Hospital
| | - Kasumi Sasaki
- Department of Pediatrics, Hiroshima City Funairi Citizens Hospital
| | - Rika Okano
- Department of Pediatrics, Hiroshima City Funairi Citizens Hospital
| |
Collapse
|
2
|
García-Peñas JJ, Calvo-Medina R, García-Ron A, Gil-Nagel A, Villanueva V, Sánchez-Carpintero R. Use of Stiripentol in Patients with Dravet Syndrome: Common Practice Among Experts in Spain. Neurol Ther 2025; 14:27-43. [PMID: 39495371 PMCID: PMC11762041 DOI: 10.1007/s40120-024-00677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Despite considerable evidence for the efficacy and safety of stiripentol in Dravet syndrome (DS), some aspects of stiripentol use remain challenging in clinical practice, such as dose titration and the adjustment of concomitant antiseizure medications (ASMs) to prevent potential adverse effects. AIM To (1) provide practical recommendations on the initiation of stiripentol treatment in patients with DS, (2) evaluate its effectiveness in the patient, and (3) guide the management of drug interactions and other aspects of treatment monitoring. METHODS Six Spanish neurologists (the authors) with expertise in the management of pediatric and adult patients with DS held a meeting in early 2024 to develop expert recommendations regarding the use of stiripentol in DS, based on a review of the literature and their common clinical experience. RESULTS According to these recommendations, stiripentol can be administered to patients with DS of any age, although its initiation and titration vary according to age group. Individualized adjustment of concomitant ASMs, such as valproic acid and clobazam or drugs specifically for DS (i.e., fenfluramine), at initiation and during stiripentol treatment, can mitigate drug interactions, thereby increasing the long-term tolerability of stiripentol treatment. In specific cases, stiripentol doses of > 50 mg/kg/day may be contemplated, and acute stiripentol administration may be considered to control refractory status epilepticus. Blood tests should be performed before starting stiripentol, at 3, 6, and 12 months after starting treatment, and then annually, except in the event of adverse effects, when additional testing may be necessary. Most adverse effects can be adequately managed by adjusting concomitant medications. CONCLUSION These practical recommendations may be easily adapted for use in different countries, and should increase physicians' confidence in the initiation and monitoring of stiripentol treatment, thus facilitating effective management of patients with DS and improving clinical outcomes.
Collapse
Affiliation(s)
- Juan José García-Peñas
- Unidad de Epilepsia, Sección de Neurología, Hospital Infantil Universitario Niño Jesús, Av. de Menéndez Pelayo, 65, 28009, Madrid, Spain.
| | - Rocío Calvo-Medina
- Unidad de Neuropediatría, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Adrián García-Ron
- Unidad del Niño y del Adolescente, Hospital Clínico San Carlos, Madrid, Spain
| | | | - Vicente Villanueva
- Unidad de Epilepsia Refractaria, Hospital Universitario y Politécnico La Fe. Member of ERN Epicare, Valencia, Spain
| | - Rocío Sánchez-Carpintero
- Unidad de Neurología Pediátrica, Clínica Universidad de Navarra. Member of the Instituto de Investigación Sanitaria de Navarra (IdisNa), Pamplona, Spain
| |
Collapse
|
3
|
Wheless J, Weatherspoon S. Use of Stiripentol in Dravet Syndrome: A Guide for Clinicians. Pediatr Neurol 2025; 162:76-86. [PMID: 39571208 DOI: 10.1016/j.pediatrneurol.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/21/2024] [Indexed: 12/13/2024]
Abstract
Dravet syndrome is a developmental and epileptic encephalopathy characterized by frequent, prolonged convulsive seizures and status epilepticus. Symptoms usually appear in the first year of life, and in addition to ongoing severe and intractable epilepsy, children with Dravet syndrome experience neurodevelopmental, behavioral, and motor impairments, along with high rates of mortality, especially in the first 12 years of life. Prompt diagnosis and initiation of treatment with broad-spectrum antiseizure medications are recommended to reduce seizure frequency and status epilepticus, and to potentially minimize the comorbidities associated with the epileptic encephalopathy. Stiripentol is an antiseizure medication approved for adjunctive use in Dravet syndrome in patients aged as young as six months. Data from randomized clinical trials and real-world studies demonstrate that stiripentol added to first-line therapy with clobazam and/or valproate is associated with high rates of seizure control, including freedom from status epilepticus, for extended periods of time including into adulthood. Stiripentol has multiple mechanisms of action and also inhibits several metabolic drug-metabolizing enzymes that can enhance the efficacy of coadministered antiseizure medications. Stiripentol is well tolerated, and treatment-emergent adverse events can often be managed by dose adjustments of comedications. This review updates the use of stiripentol in the modern era.
Collapse
Affiliation(s)
- James Wheless
- Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee.
| | - Sarah Weatherspoon
- Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
4
|
Specchio N, Auvin S, Strzelczyk A, Brigo F, Villanueva V, Trinka E. Efficacy and safety of stiripentol in the prevention and cessation of status epilepticus: A systematic review. Epilepsia Open 2024; 9:2017-2036. [PMID: 39360600 PMCID: PMC11633682 DOI: 10.1002/epi4.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
Status epilepticus (SE) is a life-threatening emergency with high morbidity and mortality. In people with epilepsy, the management of SE is focused on early medical treatment. Stiripentol is a third-generation antiseizure medication (ASM) approved for refractory generalized tonic-clonic seizures in Dravet syndrome. The aim of this systematic review was to evaluate the effectiveness and safety of stiripentol in reducing the incidence of SE in patients with Dravet syndrome or any epilepsy characterized by recurrent SE. The PubMed and Cochrane databases were systematically searched, and gray literature was hand-searched. Search results were screened by title and abstract; studies with data on the effect of stiripentol on SE outcomes, including the cessation of SE, reduction in number of SE episodes, or reduction in hospitalizations, were included. Of 66 records identified, 17 studies were eligible for inclusion, of which 15 were human studies (n = 474; aged 1.1-78 years), and two were animal experiments. Results of retrospective or prospective observational studies showed that stiripentol as add-on therapy to ASMs such as clobazam or valproate reduced the incidence of SE in patients with Dravet syndrome or other developmental and epileptic encephalopathies (DEEs). A mean of 68% of patients (range 41%-100%) had a ≥50% reduction in SE episodes from baseline, and 26%-100% of patients (mean 77%) became SE-free after stiripentol initiation. Moreover, this review found stiripentol, used as acute treatment, may also be effective for the cessation of super-refractory SE, but data are limited to three retrospective case series. Stiripentol was generally well-tolerated. In conclusion, stiripentol reduces the incidence of SE episodes in patients with Dravet syndrome and potentially other DEEs, and it promotes cessation of super-refractory SE in patients with and without a history of seizures. PLAIN LANGUAGE SUMMARY: Status epilepticus (SE) is a life-threatening, long-lasting seizure occurring in patients with/without epilepsy. This article analyzed 15 published studies that investigated the effects and safety of the anti-seizure medication stiripentol for preventing SE in epilepsy patients (prevention) or stopping an SE episode (cessation), and two animal studies that investigated how stiripentol works. In epilepsy patients, stiripentol halved the number of SE episodes in 41-100% of patients, 26-100% of patients became SE-free, and stiripentol was considered to be well tolerated. In patients with/without epilepsy, stiripentol may stop the SE episode after other drugs like anesthetics have not worked.
Collapse
Affiliation(s)
- Nicola Specchio
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's HospitalIRCCS, Member of ERN EpiCARERomeItaly
| | - Stéphane Auvin
- Université Paris Cité, INSERM NeuroDiderotParisFrance
- APHP, Robert Debré University Hospital, Pediatric Neurology DepartmentCRMR Epilepsies Rares, Member of ERN EpiCAREParisFrance
- Institut Universitaire de France (IUF)ParisFrance
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine‐Main, Department of NeurologyUniversity Hospital Frankfurt, Goethe‐University FrankfurtFrankfurt am MainGermany
| | - Francesco Brigo
- Department of NeurologyHospital of Merano (SABES‐ASDAA)MeranoItaly
| | - Vicente Villanueva
- Refractory Epilepsy Unit, Neurology ServiceHospital Universitario y Politécnico La Fe, Member of ERN EpiCAREValenciaSpain
| | - Eugen Trinka
- Department of Neurology, Christian‐Doppler University Hospital, Centre for Cognitive NeuroscienceParacelsus Medical University, Member of ERN EpiCARESalzburgAustria
- Centre for Cognitive Neuroscience, Christian‐Doppler University Hospital, Neuroscience InstituteParacelsus Medical UniversitySalzburgAustria
- Institute of Public Health, Medical Decision‐Making and HTA, UMIT – Private University for Health Sciences, Medical Informatics and TechnologyHall in TyrolAustria
| |
Collapse
|
5
|
Girard P, Bacq A, Cloarec P, Lesueur C, Verleye M, Castagné V. Stiripentol efficacy against status epilepticus and associated mortality in mice. Heliyon 2024; 10:e34854. [PMID: 39144999 PMCID: PMC11320214 DOI: 10.1016/j.heliyon.2024.e34854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Stiripentol (STP, Diacomit©) is an antiseizure medication indicated for Dravet syndrome, a rare developmental and epileptic encephalopathy characterized by drug-resistant seizures, including status epilepticus (SE). SE is a life-threatening event that may lead to increased risk of morbidity and mortality. Here, we evaluated the effect of STP on SE and SE-associated mortality using a CBA mouse model induced by systemic administration of methionine sulfoximine (MSO), an irreversible inhibitor of glutamine synthetase. MSO induces convulsions, prolonged seizure (SE) and death, with an increase of blood ammonia level. A single acute intraperitoneal pretreatment with 200-300-400 mg/kg of STP significantly inhibited the number of seizures, SE occurrence and death in MSO-treated animals in a dose-dependent manner. Regarding blood ammonia level, STP significantly reduced by 41 % the hyperammonemia induced by MSO. In conclusion, our results show protective effects of STP to reduce and or suppress the occurrence of SE as well as its associated mortality in mice.
Collapse
Affiliation(s)
- P. Girard
- Biocodex - Research and Development Center, Compiègne, France
| | - A. Bacq
- Biocodex - Research and Development Center, Compiègne, France
| | - P. Cloarec
- Biocodex - Research and Development Center, Compiègne, France
| | - C. Lesueur
- Biocodex - Research and Development Center, Compiègne, France
| | - M. Verleye
- Biocodex - Research and Development Center, Compiègne, France
| | - V. Castagné
- Biocodex - Research and Development Center, Compiègne, France
| |
Collapse
|
6
|
Gao C, Pielas M, Jiao F, Mei D, Wang X, Kotulska K, Jozwiak S. Epilepsy in Dravet Syndrome—Current and Future Therapeutic Opportunities. J Clin Med 2023; 12:jcm12072532. [PMID: 37048615 PMCID: PMC10094968 DOI: 10.3390/jcm12072532] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Dravet Syndrome (DS) is a developmental epileptic encephalopathy characterized by drug-resistant seizures and other clinical features, including intellectual disability and behavioral, sleep, and gait problems. The pathogenesis is strongly connected to voltage-gated sodium channel dysfunction. The current consensus of seizure management in DS consists of a combination of conventional and recently approved drugs such as stiripentol, cannabidiol, and fenfluramine. Despite promising results in randomized clinical trials and extension studies, the prognosis of the developmental outcomes of patients with DS remains unfavorable. The article summarizes recent changes in the therapeutic approach to DS and discusses ongoing clinical research directions. Serotonergic agents under investigation show promising results and may replace less DS-specific medicines. The use of antisense nucleotides and gene therapy is focused not only on symptom relief but primarily addresses the underlying cause of the syndrome. Novel compounds, after expected safe and successful implementation in clinical practice, will open a new era for patients with DS. The main goal of causative treatment is to modify the natural course of the disease and provide the best neurodevelopmental outcome with minimum neurological deficit.
Collapse
|
7
|
Aungaroon G, Mehta A, Horn PS, Franz DN. Stiripentol for Drug-Resistant Epilepsy Treatment in Tuberous Sclerosis Complex. Pediatr Neurol 2023; 139:86-92. [PMID: 36586162 DOI: 10.1016/j.pediatrneurol.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Drug-resistant epilepsy (DRE) is common in tuberous sclerosis complex (TSC). The role of stiripentol (STP) in seizure treatment in this population is not well understood. This study evaluates the efficacy and tolerability of STP in patients with TSC with DRE. METHODS We performed a retrospective review of patients with TSC with DRE. Seizure frequencies at 1 month before (baseline) and 1, 3, 6, and 12 months after STP initiation were collected. RESULTS Of the 1492 patients, 13 received STP and the number of patients with ≥50% seizure reduction at 1, 3, 6, and 12 months was 6/13 (46.2%), 4/13 (30.8%), 8/13 (61.5%), and 6/13 (46.2%), respectively. Six patients (46.2%) had favorable outcomes with persistent seizure reduction through 12 months. Their mean (±S.D.) percentage of seizure reduction at 1, 3, 6, and 12 months was 68.1 (±22.0), 71.3 (±23.2), 75.7 (±23.5), and 75.7 (±23.5), respectively. One patient had worsening seizures throughout the STP course. Three patients did not have seizure reduction until after 6 months, and 2 had initial seizure reduction before worsening. Younger age (P value <0.001), early STP treatment (P value <0.001), higher doses (P value = 0.004), and higher baseline seizure frequency (P value = 0.01) were associated with favorable outcomes. Side effects were seen in 85% of our cohort. CONCLUSIONS About 46% of the patients had favorable outcomes. Younger age, early STP treatment, higher doses, and higher baseline seizure frequency were significantly associated with favorable outcomes.
Collapse
Affiliation(s)
- Gewalin Aungaroon
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Amar Mehta
- Midwestern University, Downers Grove, Illinois
| | - Paul S Horn
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David N Franz
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
8
|
Krey I, Platzer K, Esterhuizen A, Berkovic SF, Helbig I, Hildebrand MS, Lerche H, Lowenstein D, Møller RS, Poduri A, Sadleir L, Sisodiya SM, Weckhuysen S, Wilmshurst JM, Weber Y, Lemke JR. Current practice in diagnostic genetic testing of the epilepsies. Epileptic Disord 2022; 24:765-786. [PMID: 35830287 PMCID: PMC10752379 DOI: 10.1684/epd.2022.1448] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2022] [Indexed: 01/19/2023]
Abstract
Epilepsy genetics is a rapidly developing field, in which novel disease-associated genes, novel mechanisms associated with epilepsy, and precision medicine approaches are continuously being identified. In the past decade, advances in genomic knowledge and analysis platforms have begun to make clinical genetic testing accessible for, in principle, people of all ages with epilepsy. For this reason, the Genetics Commission of the International League Against Epilepsy (ILAE) presents this update on clinical genetic testing practice, including current techniques, indications, yield of genetic testing, recommendations for pre- and post-test counseling, and follow-up after genetic testing is completed. We acknowledge that the resources vary across different settings but highlight that genetic diagnostic testing for epilepsy should be prioritized when the likelihood of an informative finding is high. Results of genetic testing, in particular the identification of causative genetic variants, are likely to improve individual care. We emphasize the importance of genetic testing for individuals with epilepsy as we enter the era of precision therapy.
Collapse
Affiliation(s)
- Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Alina Esterhuizen
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Heidelberg, VIC, Australia
| | - Ingo Helbig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Building C, Arnold-Heller-Straße 3, 24105 Kiel, Germany
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA
| | - Michael S. Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg and Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, Australia
| | - Holger Lerche
- Department of Epileptology and Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Daniel Lowenstein
- Department of Neurology, University of California, San Francisco, USA
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynette Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology London, UK and Chalfont Centre for Epilepsy, Buckinghamshire, UK
| | - Sarah Weckhuysen
- Center for Molecular Neurology, VIB-University of Antwerp, VIB, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Jo M. Wilmshurst
- Department of Paediatric Neurology, Paediatric and Child Health, Red Cross War Memorial Children’s Hospital, Neuroscience Institute, University of Cape Town, South Africa
| | - Yvonne Weber
- Department of Epileptology and Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
- Department of Epileptology and Neurology, University of Aachen, Germany
| | - Johannes R. Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
9
|
Balestrini S, Doccini V, Boncristiano A, Lenge M, De Masi S, Guerrini R. Efficacy and Safety of Long-Term Treatment with Stiripentol in Children and Adults with Drug-Resistant Epilepsies: A Retrospective Cohort Study of 196 Patients. Drugs Real World Outcomes 2022; 9:451-461. [PMID: 35680739 PMCID: PMC9392664 DOI: 10.1007/s40801-022-00305-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Stiripentol is an antiseizure medication with multiple potential mechanisms of action, indicated as adjunctive therapy in people with Dravet syndrome, whose seizures are not adequately controlled with clobazam and valproate. However, there are scattered data on its efficacy in other epilepsy aetiologies and types. We previously reported our single-centre experience on the efficacy of adjunctive stiripentol treatment in a cohort of 132 patients with different types of refractory epilepsies. OBJECTIVE We aimed to expand our analysis to a larger cohort of 196 patients with a long-term follow-up. METHODS We retrospectively evaluated long-term efficacy, tolerability and predictors of treatment response in 196 patients with a long-term follow-up (range 0.5-232.8 months). RESULTS After an initial median follow-up of 3 months after stiripentol introduction, we observed a responder rate of 53% including seizure freedom in 9%. At subsequent follow-ups at 12 and 24 months, responder rates were 29% and 22%, respectively. Aetiology was associated with sustained response over time, with Dravet syndrome being the aetiology with the highest responder rate (64%) at 48 months compared with syndromes with other genetic causes (13%) or unknown aetiology (38%). A higher responder rate over time was also observed in patients with generalised (44%) and combined focal and generalised epilepsies (28%) than in patients with focal epilepsies (20%). The highest relapse free-survival was observed when stiripentol was initiated at the youngest age (0-4 years) or in adulthood. The retention rate (i.e. proportion of patients who continued stiripentol with no change in either pharmacological or non-pharmacological therapy) was 53% at 12 months and 33% at 24 months. CONCLUSIONS Based on our findings, we suggest that stiripentol is an effective and well-tolerated therapeutic option not only in Dravet syndrome but also in other epilepsy syndromes with or without an established genetic aetiology. Response duration was influenced by age at stiripentol initiation across different aetiologies.
Collapse
Affiliation(s)
- Simona Balestrini
- Neuroscience Department, Meyer Children's Hospital-University of Florence, Viale Pieraccini 24, 50139, Florence, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Buckinghamshire, UK
| | - Viola Doccini
- Neuroscience Department, Meyer Children's Hospital-University of Florence, Viale Pieraccini 24, 50139, Florence, Italy
| | - Alessandra Boncristiano
- Neuroscience Department, Meyer Children's Hospital-University of Florence, Viale Pieraccini 24, 50139, Florence, Italy
| | - Matteo Lenge
- Neuroscience Department, Meyer Children's Hospital-University of Florence, Viale Pieraccini 24, 50139, Florence, Italy
| | - Salvatore De Masi
- Clinical Trial Office, Meyer Children's University Hospital, Florence, Italy
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital-University of Florence, Viale Pieraccini 24, 50139, Florence, Italy.
| |
Collapse
|
10
|
Zhou DJ, Pavuluri S, Snehal I, Schmidt CM, Situ-Kcomt M, Taraschenko O. Movement disorders associated with antiseizure medications: A systematic review. Epilepsy Behav 2022; 131:108693. [PMID: 35483204 PMCID: PMC9596228 DOI: 10.1016/j.yebeh.2022.108693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 11/19/2022]
Abstract
New-onset movement disorders have been frequently reported in association with the use of antiseizure medications (ASMs). The frequency of specific motor manifestations and the spectrum of their semiology for various ASMs have not been well characterized. We carried out a systematic review of literature and conducted a search on CINAHL, Cochrane Library, EMBASE, MEDLINE, PsycINFO, and Scopus from inception to April 2021. We compiled the data for all currently available ASMs using the conventional terminology of movement disorders. Among 5123 manuscripts identified by the search, 437 met the inclusion criteria. The largest number of reports of abnormal movements were in association with phenobarbital, valproic acid, lacosamide, and perampanel, and predominantly included tremor and ataxia. The majority of attempted interventions for all agents were discontinuation of the offending drug or dose reduction which led to the resolution of symptoms in most patients. Familiarity with the movement disorder phenomenology previously encountered in relation with specific ASMs facilitates early recognition of adverse effects and timely institution of targeted interventions.
Collapse
Affiliation(s)
- Daniel J Zhou
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Spriha Pavuluri
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Isha Snehal
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Cynthia M Schmidt
- Leon S. McGoogan Health Sciences Library, University of Nebraska Medical Center, Omaha, NE, United States
| | - Miguel Situ-Kcomt
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Olga Taraschenko
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
11
|
Strzelczyk A, Schubert-Bast S. A Practical Guide to the Treatment of Dravet Syndrome with Anti-Seizure Medication. CNS Drugs 2022; 36:217-237. [PMID: 35156171 PMCID: PMC8927048 DOI: 10.1007/s40263-022-00898-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 01/14/2023]
Abstract
Dravet syndrome is a severe developmental and epileptic encephalopathy characterised by refractory seizures and cognitive dysfunction. The treatment is challenging, not least because the seizures are highly drug resistant, requiring multiple anti-seizure medications (ASMs), while some ASMs can exacerbate seizures. Initial treatments include the broad-spectrum ASMs valproate (VPA), and clobazam (CLB) in some regions; however, they are generally insufficient to control seizures. With this in mind, three adjunct ASMs have been approved specifically for the treatment of seizures in patients with Dravet syndrome: stiripentol (STP) in 2007 in the European Union and 2018 in the USA, cannabidiol (CBD) in 2018/2019 (in combination with CLB in the European Union) and fenfluramine (FFA) in 2020. These "add-on" therapies (mostly to VPA/CLB) are used as escalation therapies, with the choice dependent on availability in different countries, patient characteristics and caregiver preferences. Topiramate is also frequently used, with evidence of efficacy in Dravet syndrome, and there is anecdotal evidence of efficacy with bromide, which is frequently used in Germany and Japan. With a growing treatment landscape for Dravet syndrome, there can be practical challenges for clinicians, particularly with issues associated with polypharmacy. This practical guide provides an overview of these main ASMs including their indications/contraindications, mechanism of action, efficacy, safety and tolerability profile, dosage requirements, and laboratory and clinical parameters to be evaluated. Standard laboratory and clinical parameters include blood counts, liver function tests, serum concentrations of ASMs, monitoring the growth of children, as well as weight loss and acceleration of behavioural problems. Regular cardiac monitoring is also important with FFA as it has previously been associated with cases of cardiac valve disease when used in adults at high doses (up to 120 mg/day) in combination with phentermine as a therapy for obesity. Importantly, no signs of heart valve disease have been documented to date at the low doses used in patients with developmental and epileptic encephalopathies. In addition, potential drug-drug interactions and their consequences are a key consideration in everyday practice. Interactions that potentially require dosage adjustments to alleviate adverse events include the following: STP + CLB resulting in increased plasma concentrations of CLB and its active metabolite norclobazam may increase somnolence, and an interaction with STP and VPA may increase gastrointestinal adverse events. Cannabidiol has a bi-directional interaction with CLB producing an increase in plasma concentrations of 7-OH-CBD and norclobazam resulting in the potential for increased somnolence and sedation. In addition, CBD is associated with elevations of liver transaminases particularly in patients taking concomitant VPA. The interaction between FFA and STP requires a dose reduction of FFA. Furthermore, concomitant administration of VPA with topiramate has been associated with encephalopathy and/or hyperammonaemia. Finally, we briefly describe other ASMs used in Dravet syndrome, and current key clinical trials.
Collapse
Affiliation(s)
- Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16 (Haus 95), 60528, Frankfurt am Main, Germany. .,LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.
| | - Susanne Schubert-Bast
- grid.7839.50000 0004 1936 9721Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16 (Haus 95), 60528 Frankfurt am Main, Germany ,grid.7839.50000 0004 1936 9721LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany ,grid.7839.50000 0004 1936 9721Department of Neuropediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Balestrini S, Chiarello D, Gogou M, Silvennoinen K, Puvirajasinghe C, Jones WD, Reif P, Klein KM, Rosenow F, Weber YG, Lerche H, Schubert-Bast S, Borggraefe I, Coppola A, Troisi S, Møller RS, Riva A, Striano P, Zara F, Hemingway C, Marini C, Rosati A, Mei D, Montomoli M, Guerrini R, Cross JH, Sisodiya SM. Real-life survey of pitfalls and successes of precision medicine in genetic epilepsies. J Neurol Neurosurg Psychiatry 2021; 92:1044-1052. [PMID: 33903184 PMCID: PMC8458055 DOI: 10.1136/jnnp-2020-325932] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/20/2021] [Accepted: 03/28/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The term 'precision medicine' describes a rational treatment strategy tailored to one person that reverses or modifies the disease pathophysiology. In epilepsy, single case and small cohort reports document nascent precision medicine strategies in specific genetic epilepsies. The aim of this multicentre observational study was to investigate the deeper complexity of precision medicine in epilepsy. METHODS A systematic survey of patients with epilepsy with a molecular genetic diagnosis was conducted in six tertiary epilepsy centres including children and adults. A standardised questionnaire was used for data collection, including genetic findings and impact on clinical and therapeutic management. RESULTS We included 293 patients with genetic epilepsies, 137 children and 156 adults, 162 females and 131 males. Treatment changes were undertaken because of the genetic findings in 94 patients (32%), including rational precision medicine treatment and/or a treatment change prompted by the genetic diagnosis, but not directly related to known pathophysiological mechanisms. There was a rational precision medicine treatment for 56 patients (19%), and this was tried in 33/56 (59%) and was successful (ie, >50% seizure reduction) in 10/33 (30%) patients. In 73/293 (25%) patients there was a treatment change prompted by the genetic diagnosis, but not directly related to known pathophysiological mechanisms, and this was successful in 24/73 (33%). SIGNIFICANCE Our survey of clinical practice in specialised epilepsy centres shows high variability of clinical outcomes following the identification of a genetic cause for an epilepsy. Meaningful change in the treatment paradigm after genetic testing is not yet possible for many people with epilepsy. This systematic survey provides an overview of the current application of precision medicine in the epilepsies, and suggests the adoption of a more considered approach.
Collapse
Affiliation(s)
- Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, and Chalfont Centre for Epilepsy, Gerrard Cross, UK
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
| | - Daniela Chiarello
- Institute of Child Health, University College of London (UCL) Great Ormond Street NIHR BRC, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Maria Gogou
- Institute of Child Health, University College of London (UCL) Great Ormond Street NIHR BRC, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Katri Silvennoinen
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, and Chalfont Centre for Epilepsy, Gerrard Cross, UK
| | | | - Wendy D Jones
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, and Chalfont Centre for Epilepsy, Gerrard Cross, UK
- Institute of Child Health, University College of London (UCL) Great Ormond Street NIHR BRC, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Philipp Reif
- Epilepsy Center Frankfurt Rhine-Main University of Frankfurt, University of Frankfurt, Frankfurt Rhine Main, Germany
- Department of Neurology, University Hospital Frankfurt and LOEWE Center for Personalized Translational Epilepsy Research (CePTER) Goethe-University Frankfurt, Frankfurt am Main, Germany
- Epilepsy Center Hessen and Department of Neurology, Philipps-University, Marburg, Germany
| | - Karl Martin Klein
- Epilepsy Center Frankfurt Rhine-Main University of Frankfurt, University of Frankfurt, Frankfurt Rhine Main, Germany
- Department of Neurology, University Hospital Frankfurt and LOEWE Center for Personalized Translational Epilepsy Research (CePTER) Goethe-University Frankfurt, Frankfurt am Main, Germany
- Epilepsy Center Hessen and Department of Neurology, Philipps-University, Marburg, Germany
- Departments of Clinical Neurosciences, Medical Genetics and Community Health Sciences, Hotchkiss Brain Institute & Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main University of Frankfurt, University of Frankfurt, Frankfurt Rhine Main, Germany
- Department of Neurology, University Hospital Frankfurt and LOEWE Center for Personalized Translational Epilepsy Research (CePTER) Goethe-University Frankfurt, Frankfurt am Main, Germany
- Epilepsy Center Hessen and Department of Neurology, Philipps-University, Marburg, Germany
| | - Yvonne G Weber
- Department of Neurology and Epileptology, University of Tübingen, Tubingen, Germany
- Department of Epileptology and Neurology, University of Aachen, Aachen, Germany
| | - Holger Lerche
- Epilepsy Center Frankfurt Rhine-Main University of Frankfurt, University of Frankfurt, Frankfurt Rhine Main, Germany
- Department of Neurology and Epileptology, University of Tübingen, Tubingen, Germany
| | - Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main University of Frankfurt, University of Frankfurt, Frankfurt Rhine Main, Germany
| | - Ingo Borggraefe
- Department of Pediatric Neurology, Dr von Haunerschen Kinderspital, University of Munich, Munich, Germany
| | - Antonietta Coppola
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Epilepsy Centre, Federico II University, Naples, Italy
| | - Serena Troisi
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Epilepsy Centre, Federico II University, Naples, Italy
| | - Rikke S Møller
- The Danish Epilepsy Centre Filadelfia, Dianalund, and Institute for Regional Health Services Research, University of Southern Denmark, Odense, Denmark
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS 'G. Gaslini' Institute, Genova, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS 'G. Gaslini' Institute, Genova, Italy
| | | | - Carla Marini
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
- Child Neurology and Psychiatric Unit, Salesi Children's Hospital, Ancona, Italy
| | - Anna Rosati
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
| | - Davide Mei
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
| | - Martino Montomoli
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
| | - Renzo Guerrini
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
| | - J Helen Cross
- Institute of Child Health, University College of London (UCL) Great Ormond Street NIHR BRC, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, and Chalfont Centre for Epilepsy, Gerrard Cross, UK
| |
Collapse
|
13
|
Habermehl L, Mross PM, Krause K, Immisch I, Chiru D, Zahnert F, Gorny I, Strzelczyk A, Rosenow F, Möller L, Menzler K, Knake S. Stiripentol in the treatment of adults with focal epilepsy- a retrospective analysis. Seizure 2021; 88:7-11. [PMID: 33774499 DOI: 10.1016/j.seizure.2021.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVES The aim of the present study was to evaluate the safety and efficacy of the add-on treatment of stiripentol (STP) in adult patients with severely pharmacoresistant focal or multifocal epilepsy. METHODS Data on adult patients treated with STP from March 2007 to July 2020 and with at least one clinical follow-up (FU) were retrospectively reviewed. Data on tolerability, efficacy and concomitant medication were evaluated at baseline, 6 months (5.5 ± 1.6 months (mean ± SD)) and 12 months (13.1 ± 3.9 months (mean ± SD)). RESULTS Data of 22 patients (54.5% male, mean age 34.4 ± 17.79 years (mean ± SD), including mean duration of epilepsy 17.6 ± 25.5 years (mean ± SD), median seizure frequency 30 ± 20 (median ± MAD) per month, and 63.6% being severely intellectually disabled, with 3 to 18 previous anti-seizure-drugs (ASD), were collected. After 6 months, 72.7% of the patients were still taking STP, and 31% of the patients were responders, including 13% who were seizure-free. The 12-month retention rate was 54.4 %, the response rate was 36.4% and 13.6% of patients were seizure-free at the 12-month FU. Reasons for discontinuation were increased seizure frequency, hyperammonaemia and encephalopathy. CONCLUSION STP seems to be a useful option in the treatment of patients with severely pharmacoresistant epilepsy. Prospective trials are necessary to examine the efficacy of STP in adult patients with pharmacoresistant focal epilepsy.
Collapse
Affiliation(s)
- L Habermehl
- Department of Neurology, Epilepsy Centre Hessen, Philipps-University Marburg, Marburg, Germany
| | - P M Mross
- Department of Neurology, Epilepsy Centre Hessen, Philipps-University Marburg, Marburg, Germany
| | - K Krause
- Department of Neurology, Epilepsy Centre Hessen, Philipps-University Marburg, Marburg, Germany
| | - I Immisch
- Department of Neurology, Epilepsy Centre Hessen, Philipps-University Marburg, Marburg, Germany
| | - D Chiru
- Department of Acute Medicine, Schweizer Paraplegiker Zentrum, Notwill, Switzerland
| | - F Zahnert
- Department of Neurology, Epilepsy Centre Hessen, Philipps-University Marburg, Marburg, Germany
| | - I Gorny
- Department of Neurology, Epilepsy Centre Hessen, Philipps-University Marburg, Marburg, Germany
| | - A Strzelczyk
- Department of Neurology, Epilepsy Centre Frankfurt Rhine-Main, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - F Rosenow
- Department of Neurology, Epilepsy Centre Frankfurt Rhine-Main, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - L Möller
- Department of Neurology, Epilepsy Centre Hessen, Philipps-University Marburg, Marburg, Germany
| | - K Menzler
- Department of Neurology, Epilepsy Centre Hessen, Philipps-University Marburg, Marburg, Germany
| | - S Knake
- Department of Neurology, Epilepsy Centre Hessen, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
14
|
Nabbout R, Chemaly N, Chiron C, Kuchenbuch M. Safety considerations selecting antiseizure medications for the treatment of individuals with Dravet syndrome. Expert Opin Drug Saf 2021; 20:561-576. [PMID: 33645379 DOI: 10.1080/14740338.2021.1890025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Management of individuals with Dravet Syndrome has evolved significantly over the past 10 years. Progress has been made in understanding the pathophysiology, the long-term outcome and possible consequences of inappropriate therapies, new drugs have been approved by the regulatory authorities and patients and families expressed their needs beyond seizures' control.Areas covered: The authors aimed at providing an overview of the main antiseizure medications used in Dravet syndrome with a particular focus on safety considerations. As the highly active phase of seizures takes place before the age of 5 years, the characteristics of antiseizure medications in infancy and childhood have also been considered due to their impact on antiseizure medication safety.Expert opinion: Recent treatments, evaluated via randomized clinical trials, are promising in terms of efficacy and safety in individuals with DS. However, the balance between expected benefits and risks taken must be accurately assessed on an individual basis. There is a lack of data to understand the needs of patients and families, a major point particularly in this population, where the evaluation of efficacy and safety beyond seizures is difficult due to cognitive delay and behavioral disorders and where this evaluation is coming almost exclusively from caregivers.
Collapse
Affiliation(s)
- Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, Université De Paris, Paris, France.,Institut National De La Santé Et De La Recherche Médicale (INSERM), UMR 1163, Institut Imagine, Université De Paris, Paris, France
| | - N Chemaly
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, Université De Paris, Paris, France.,Institut National De La Santé Et De La Recherche Médicale (INSERM), UMR 1163, Institut Imagine, Université De Paris, Paris, France
| | - C Chiron
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, Université De Paris, Paris, France.,INSERM U1141, Paris, France & Neurospin, CEA, Gif/Yvette, France
| | - M Kuchenbuch
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, Université De Paris, Paris, France.,Institut National De La Santé Et De La Recherche Médicale (INSERM), UMR 1163, Institut Imagine, Université De Paris, Paris, France
| |
Collapse
|
15
|
Johannessen Landmark C, Potschka H, Auvin S, Wilmshurst JM, Johannessen SI, Kasteleijn-Nolst Trenité D, Wirrell EC. The role of new medical treatments for the management of developmental and epileptic encephalopathies: Novel concepts and results. Epilepsia 2021; 62:857-873. [PMID: 33638459 DOI: 10.1111/epi.16849] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/20/2022]
Abstract
Developmental and epileptic encephalopathies (DEEs) are among the most challenging of all epilepsies to manage, given the exceedingly frequent and often severe seizure types, pharmacoresistance to conventional antiseizure medications, and numerous comorbidities. During the past decade, efforts have focused on development of new treatment options for DEEs, with several recently approved in the United States or Europe, including cannabidiol as an orphan drug in Dravet and Lennox-Gastaut syndromes and everolimus as a possible antiepileptogenic and precision drug for tuberous sclerosis complex, with its impact on the mammalian target of rapamycin pathway. Furthermore, fenfluramine, an old drug, was repurposed as a novel therapy in the treatment of Dravet syndrome. The evolution of new insights into pathophysiological processes of various DEEs provides possibilities to investigate novel and repurposed drugs and to place them into the context of their role in future management of these patients. The purpose of this review is to provide an overview of these new medical treatment options for the DEEs and to discuss the clinical implications of these results for improved treatment.
Collapse
Affiliation(s)
- Cecilie Johannessen Landmark
- Program for Pharmacy, Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.,National Center for Epilepsy, Oslo University Hospital, Oslo, Norway.,Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Stéphane Auvin
- Pediatric Neurology Department, Robert Debré Hospital, Public Hospital Network of Paris, Paris, France.,Mixed Unit of Research NeuroDiderot U1141, University of Paris, Paris, France
| | - Jo M Wilmshurst
- Paediatric Neurology Department, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Svein I Johannessen
- National Center for Epilepsy, Oslo University Hospital, Oslo, Norway.,Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | | | - Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Selvarajah A, Zulfiqar-Ali Q, Marques P, Rong M, Andrade DM. A systematic review of adults with Dravet syndrome. Seizure 2021; 87:39-45. [PMID: 33677403 DOI: 10.1016/j.seizure.2021.02.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/30/2022] Open
Abstract
Dravet Syndrome (DS) is a rare and severe infantile-onset epileptic encephalopathy. DS research focuses mainly on children. We did a systematic review, completed on January 18th, 2021, examining the number of clinical DS studies. We show that there are 208 studies on children exclusively, 28 studies on adults exclusively, and 116 studies involving adults and children combined. This 7:1 ratio of children to adult studies exclusively shows the dearth of research that addresses long-term natural history of DS into adulthood. Through this systematic review, we examine the most up-to-date information in DS adults as it pertains to seizures, electroencephalogram, imaging, treatment, motor abnormalities, cognitive and social behavior outcomes, cardiac abnormalities, sleep disturbances, diagnosis in adults, and mortality. Overall, the frequency of seizures increases in the first decade of life and then myoclonic, atypical absences and focal seizures with impaired awareness tend to decrease in frequency or even disappear in adulthood. Adults tend to have a notable reduction in status epilepticus, especially after 30 years of age. Parkinsonian features were seen in patients as young as 19 years old and are more severe in older patients, suggesting a progression of the parkinsonian symptoms. In adulthood, patients continue to present with behavior problems, associated with a lower health-related quality of life. The leading reported cause of death in DS adults is Sudden Unexpected Death in Epilepsy (SUDEP). Further studies in older adults are needed to understand the long-term outcomes of patients with DS.
Collapse
Affiliation(s)
- Arunan Selvarajah
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada; Adult Epilepsy Genetics Program, Division of Neurology, Krembil Research Institute, Toronto Western Hospital, Toronto, Canada
| | - Quratulain Zulfiqar-Ali
- Adult Epilepsy Genetics Program, Division of Neurology, Krembil Research Institute, Toronto Western Hospital, Toronto, Canada
| | - Paula Marques
- Adult Epilepsy Genetics Program, Division of Neurology, Krembil Research Institute, Toronto Western Hospital, Toronto, Canada; Division of Neurology, Department of Medicine, University of Toronto, ON, Canada
| | - Marlene Rong
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada; Adult Epilepsy Genetics Program, Division of Neurology, Krembil Research Institute, Toronto Western Hospital, Toronto, Canada
| | - Danielle M Andrade
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada; Adult Epilepsy Genetics Program, Division of Neurology, Krembil Research Institute, Toronto Western Hospital, Toronto, Canada; Division of Neurology, Department of Medicine, University of Toronto, ON, Canada; Krembil Neurosciences Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
17
|
Yamada M, Suzuki K, Matsui D, Inoue Y, Ohtsuka Y. Long-term safety and effectiveness of stiripentol in patients with Dravet syndrome: Interim report of a post-marketing surveillance study in Japan. Epilepsy Res 2020; 170:106535. [PMID: 33388609 DOI: 10.1016/j.eplepsyres.2020.106535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND A post-marketing surveillance study is investigating the safety and effectiveness of stiripentol during real-world clinical use in Japanese patients with Dravet syndrome (DS). METHODS The safety and effectiveness of stiripentol were prospectively investigated over 104 weeks in all patients with DS who were administered the drug from November 2012 through July 2019 in Japan. Patients administered stiripentol for the first time after its approval were defined as "new patients," and those who continued to take the drug after participating in domestic clinical studies were defined as "continuous-use patients." The responder rate was defined as the proportion of patients with a ≥50 % decrease in seizure episodes at the time of assessment of stiripentol effectiveness compared with the 4 weeks before starting stiripentol. Overall improvement was evaluated by the physician in charge based on the comprehensive assessment of the patient's condition after stiripentol treatment. RESULTS Of 411 patients whose information was collected, 410 patients (376 new and 34 continuous-use) were included in the safety analysis set, and 409 (376 new and 33 continuous-use) were included in the effectiveness analysis set. The median age of new patients was 7 years (range: 0.5-50 years) at the time of stiripentol initiation; 99 % of patients were taking concomitant sodium valproate and 93 % clobazam. Adverse drug reactions occurred in 70 % of new patients; the most common were somnolence (39 %) and loss of appetite (25 %). No new safety concerns due to stiripentol were observed. The responder rate in new patients was 43 % (110/257 patients) for convulsive seizures (tonic-clonic and/or clonic convulsions), 55 % (58/105 patients) for focal impaired awareness seizures, and 62 % (56/90 patients) for generalized myoclonic seizures and/or generalized atypical absence seizures. Overall improvement (after 104 weeks or at the time of drug discontinuation) was rated as marked or moderate in 160/353 of new patients (45 %). CONCLUSION Stiripentol is safe and effective during long-term use in patients with DS in routine clinical practice.
Collapse
Affiliation(s)
- Miyuki Yamada
- Safety Vigilance & Management Dept., Reliability & Quality Assurance Division, Meiji Seika Pharma Co., Ltd., Tokyo, Japan.
| | - Katsuyoshi Suzuki
- Safety Vigilance & Management Dept., Reliability & Quality Assurance Division, Meiji Seika Pharma Co., Ltd., Tokyo, Japan.
| | - Daisuke Matsui
- Safety Vigilance & Management Dept., Reliability & Quality Assurance Division, Meiji Seika Pharma Co., Ltd., Tokyo, Japan.
| | - Yushi Inoue
- Department of Clinical Research, National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan.
| | - Yoko Ohtsuka
- Department of Child Neurology, Asahigawaso Rehabilitation and Medical Center, Okayama, Japan.
| |
Collapse
|
18
|
Strzelczyk A, Schubert-Bast S. Therapeutic advances in Dravet syndrome: a targeted literature review. Expert Rev Neurother 2020; 20:1065-1079. [PMID: 32799683 DOI: 10.1080/14737175.2020.1801423] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Dravet syndrome (DS), a prototypic developmental and genetic epileptic encephalopathy (DEE), is characterized by an early onset of treatment-refractory seizures, together with impairments in motor control, behavior, and cognition. Even with multiple conventional anti-epileptic drugs, seizures remain poorly controlled, and there has been a considerable unmet need for effective and tolerable treatments. AREAS COVERED This targeted literature review aims to highlight recent changes to the therapeutic landscape for DS by summarizing the most up-to-date, evidence-based research, including pivotal data from the clinical development of stiripentol, cannabidiol, and fenfluramine, which are important milestones for DS treatment, together with the latest findings of other pharmacotherapies in development. In phase III, double-blind, placebo-controlled randomized controlled trials stiripentol, cannabidiol, and fenfluramine have shown clinically relevant reductions in convulsive seizure frequency, and are generally well tolerated. Stiripentol was associated with responder rates (greater than 50% reduction in convulsive seizure frequency) of 67%-71%, when added to valproic acid and clobazam; cannabidiol was associated with responder rates of 43%-49% (48%-63% in conjunction with clobazam), and fenfluramine of 54%-68% across studies. Therapies in development include soticlestat, ataluren, verapamil, and clemizole, with strategies to treat the underlying cause of DS, including gene therapy and antisense oligonucleotides beginning to emerge from preclinical studies. EXPERT OPINION Despite the challenges of drug development in rare diseases, this is an exciting time for the treatment of DS, with the promise of new efficacious and well-tolerated therapies, which may pave the way for treatment advances in other DEEs.
Collapse
Affiliation(s)
- Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt , Frankfurt am Main, Germany.,LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt , Frankfurt am Main, Germany
| | - Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt , Frankfurt am Main, Germany.,LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt , Frankfurt am Main, Germany.,Department of Neuropediatrics, Goethe-University Frankfurt , Frankfurt am Main, Germany
| |
Collapse
|
19
|
Abstract
Stiripentol (Diacomit®) is an orally-active, structurally unique anti-epileptic drug (AED) with multiple potential mechanisms of action, including enhancement of central γ-aminobutyric acid transmission. In the EU, stiripentol is indicated for use in conjunction with clobazam and valproate as adjunctive therapy of refractory generalized tonic-clonic seizures in patients with Dravet syndrome (DS; previously known as severe myoclonic epilepsy of infancy), whose seizures are not adequately controlled with clobazam and valproate. This approval (and similar DS indications in the USA, Canada and Japan), reflect the results of the STICLO studies, two small, randomized controlled trials in which stiripentol as adjunctive therapy was associated with a markedly superior response rate after 2 months compared with placebo in patients aged between 3 and ≈ 21 years with DS that was inadequately controlled with clobazam and valproate. These short-term results have subsequently been supported and extended by findings from longer-term, open-label, observational studies, including a retrospective longitudinal cohort study, which showed that the efficacy of combining stiripentol with clobazam and valproate when started at paediatric age was maintained in mid-adulthood with up to 24 years of exposure, and up to 40 years of age. Drowsiness, appetite loss, weight loss, ataxia and tremor are the most common adverse events associated with the addition of stiripentol to clobazam and valproate. Based on the available evidence, stiripentol, as an adjunct to clobazam and valproate, is a demonstrably beneficial and generally well-tolerated second-line treatment for patients with DS.
Collapse
Affiliation(s)
- James E Frampton
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
20
|
Abstract
Dravet syndrome is a rare but severe epilepsy syndrome that begins in the first year of life with recurrent seizures triggered by fever that are typically prolonged and hemiclonic. The epilepsy is highly drug resistant. Although development is normal at onset, over time, most patients develop moderate-to-severe intellectual disability, behavior disorders, and a characteristic crouch gait. There is a significant mortality, predominantly owing to sudden unexpected death in epilepsy. Complete seizure control is rarely attainable. Initial therapy includes valproic acid and clobazam, but response is typically inadequate. The results of new drugs for Dravet syndrome, including stiripentol, cannabidiol, and fenfluramine, are very promising. Stiripentol was associated with a greater than 50% reduction in convulsive seizure frequency in 71% of cases, when added to valproic acid and clobazam, and also markedly reduced status epilepticus. Pharmaceutical-grade cannabidiol resulted in a median change in monthly motor seizures from baseline of - 36.5%. Fenfluramine was associated with a greater than 50% reduction in seizures of 70%, with one quarter of cases achieving near seizure freedom over the duration of the trial. These agents are generally well tolerated, with few patients discontinuing for adverse effects. There is limited evidence to date regarding improvement in cognition with these newer agents; however, a meaningful change is challenging to assess over short trial periods and requires longer follow-up studies. While current treatments focus predominantly on seizure control, newer therapies including genetic treatments and antisense oligonucleotides can target the SCN1A channelopathy, and thus, may also significantly impact the important co-morbidities associated with this syndrome.
Collapse
Affiliation(s)
- Elaine C Wirrell
- Child and Adolescent Neurology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| | - Rima Nabbout
- Hôpital Necker Enfants Malades, Université Paris Descartes, Paris, France
| |
Collapse
|
21
|
Abstract
Genomic testing has become routine in the diagnosis and management of pediatric patients with epilepsy. In a single test, hundreds to thousands of genes are examined for DNA changes that may not only explain the etiology of the patient's condition but may also inform management and seizure control. Clinical genomic testing has been in clinical practice for less than a decade, and because of this short period of time, the appropriate clinical use and interpretation of genomic testing is still evolving. Compared to the previous era of single-gene testing in epilepsy, which yielded a diagnosis in <5% of cases, many clinical genomic studies of epilepsy have demonstrated a clinically significant diagnosis in 30% or more of patients tested. This review will examine key studies of the past decade and indicate the clinical scenarios in which genomic testing should be considered standard of care.
Collapse
Affiliation(s)
- Drew M Thodeson
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Jason Y Park
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas 75235, USA.,Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas 75235, USA
| |
Collapse
|
22
|
Buck ML, Goodkin HP. Stiripentol: A Novel Antiseizure Medication for the Management of Dravet Syndrome. Ann Pharmacother 2019; 53:1136-1144. [DOI: 10.1177/1060028019856008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objective: To describe the pharmacology, efficacy, and safety of stiripentol in the treatment of refractory seizures in patients with Dravet syndrome. Data Sources: A search of the English language literature was conducted using PubMed and MEDLINE (1978 to April 2019) with the search terms stiripentol, Dravet syndrome, and refractory epilepsy. Other resources included article bibliographies, prescribing information, and relevant trials at https://clinicaltrials.gov/ . Study Selection and Data Extraction: All phase 1, 2, or 3 trials; observational studies; and retrospective studies were analyzed. Data Synthesis: In controlled studies, stiripentol has been shown to reduce seizure frequency by 50% or more in 40% to 70% of patients with Dravet syndrome. Reductions in seizure duration and episodes of status epilepticus have also been documented. Common adverse effects include somnolence and anorexia. Stiripentol inhibits the metabolism of clobazam and valproate, often requiring dose adjustment. Relevance to Patient Care and Clinical Practice: Stiripentol, a direct allosteric modulator of GABAA receptors, offers a novel approach to treatment in patients with Dravet syndrome, both with and without pathogenic variants of the sodium channel α-1 subunit gene, and potentially other refractory seizures. Although available outside the United States for a decade, it was only recently approved by the Food and Drug Administration for patients 2 years of age and older with Dravet syndrome taking clobazam. Conclusions: Stiripentol is an effective adjunctive therapy for reducing the frequency and duration of refractory seizures in patients with Dravet syndrome. Its role in the treatment of other refractory epilepsies requires further study.
Collapse
Affiliation(s)
- Marcia L. Buck
- University of Virginia Health System, Charlottesville, VA, USA
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | | |
Collapse
|
23
|
Chiron C. Stiripentol for the treatment of seizures associated with Dravet syndrome. Expert Rev Neurother 2019; 19:301-310. [DOI: 10.1080/14737175.2019.1593142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Catherine Chiron
- Inserm NeuroDiderot, InDev, Paris, France
- Neurospin, CEA, Paris, France
| |
Collapse
|
24
|
Chiron C, Helias M, Kaminska A, Laroche C, de Toffol B, Dulac O, Nabbout R, An I. Do children with Dravet syndrome continue to benefit from stiripentol for long through adulthood? Epilepsia 2018; 59:1705-1717. [DOI: 10.1111/epi.14536] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Catherine Chiron
- Department of Pediatric Neurology; Inserm U1129; Necker-Enfants Malades Hospital; Paris France
- Reference Center for Rare Epilepsies; APHP; Necker-Enfants Malades Hospital; Paris France
| | - Marie Helias
- ESAT le Val (Center of Readaptation for Adults); Mortagne-au-Perche France
| | - Anna Kaminska
- Department of Pediatric Neurology; Inserm U1129; Necker-Enfants Malades Hospital; Paris France
- Reference Center for Rare Epilepsies; APHP; Necker-Enfants Malades Hospital; Paris France
| | - Cecile Laroche
- Department of Pediatrics; Mother and Child Hospital; Limoges France
| | | | - Olivier Dulac
- Department of Pediatric Neurology; Inserm U1129; Necker-Enfants Malades Hospital; Paris France
- Reference Center for Rare Epilepsies; APHP; Necker-Enfants Malades Hospital; Paris France
| | - Rima Nabbout
- Department of Pediatric Neurology; Inserm U1129; Necker-Enfants Malades Hospital; Paris France
- Reference Center for Rare Epilepsies; APHP; Necker-Enfants Malades Hospital; Paris France
| | - Isabelle An
- Reference Center for Rare Epilepsies; APHP; Necker-Enfants Malades Hospital; Paris France
- Department of Neurology; APHP; Pitie-Salpetriere Hospital; Paris France
| |
Collapse
|
25
|
Abstract
Dravet syndrome (DS) is a medically refractory epilepsy that onsets in the first year of life with prolonged seizures, often triggered by fever. Over time, patients develop other seizure types (myoclonic, atypical absences, drops), intellectual disability, crouch gait and other co-morbidities (sleep problems, autonomic dysfunction). Complete seizure control is generally not achievable with current therapies, and the goals of treatment are to balance reduction of seizure burden with adverse effects of therapies. Treatment of co-morbidities must also be addressed, as they have a significant impact on the quality of life of patients with DS. Seizures are typically worsened with sodium-channel agents. Accepted first-line agents include clobazam and valproic acid, although these rarely provide adequate seizure control. Benefit has also been noted with stiripentol, topiramate, levetiracetam, the ketogenic diet and vagal nerve stimulation. Several agents presently in development, specifically fenfluramine and cannabidiol, have shown efficacy in clinical trials. Status epilepticus is a recurring problem for patients with DS, particularly in their early childhood years. All patients should be prescribed a home rescue therapy (usually a benzodiazepine) but should also have a written seizure action plan that outlines when rescue should be given and further steps to take in the local hospital if the seizure persists despite home rescue therapy.
Collapse
|
26
|
Cho MJ, Kwon SS, Ko A, Lee ST, Lee YM, Kim HD, Chung HJ, Kim SH, Lee JS, Kim DS, Kang HC. Efficacy of Stiripentol in Dravet Syndrome with or without SCN1A Mutations. J Clin Neurol 2017; 14:22-28. [PMID: 29141279 PMCID: PMC5765252 DOI: 10.3988/jcn.2018.14.1.22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose The aim of this study was to determine the effectiveness of stiripentol (STP) add-on therapy to valproate and clobazam in patients with Dravet syndrome (DS) according to the presence of mutations in the sodium channel alpha-1 subunit gene (SCN1A). Methods We performed direct sequencing to analyze SCN1A mutations in 32 patients with clinically confirmed with DS, and classified them into mutation (pathogenic or likely pathogenic) and nonmutation groups based on American College of Medical Genetics and Genomics guidelines. We compared the efficacy of STP in reducing the seizure frequency between the two groups. Results The 32 patients comprised 15 patients in the mutation group (with definite SCN1A mutations) and 17 patients in the nonmutation group with variants of unknown significance or benign variants. The clinical profile did not differ significantly between the mutation and nonmutation groups. The seizure frequency relative to baseline reduced by 72.53±23.00% (mean±SD) in the mutation group versus 50.58±40.14% in the nonmutation group (p=0.004). The efficacy of STP was better in DS patients with missense mutations that in those with truncation mutations, and was not favorable in patients with mutations at linkers between domains (DII–DIII), linkers between segments of domain I (DI S1–S2), or splice sites, although the small number of patients prevented statistical analyses. Conclusions The efficacy of STP was significantly better in DS patients with definite SCN1A mutations than in those without mutations.
Collapse
Affiliation(s)
- Min Jung Cho
- Divison of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Epilepsy Research Institute, Seoul, Korea
| | - Soon Sung Kwon
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ara Ko
- Divison of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Epilepsy Research Institute, Seoul, Korea
| | - Seung Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young Mock Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Heung Dong Kim
- Divison of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Epilepsy Research Institute, Seoul, Korea
| | - Hee Jung Chung
- Department of Pediatrics, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Se Hee Kim
- Divison of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Epilepsy Research Institute, Seoul, Korea
| | - Joon Soo Lee
- Divison of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Epilepsy Research Institute, Seoul, Korea
| | - Dae Sung Kim
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Hoon Chul Kang
- Divison of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Epilepsy Research Institute, Seoul, Korea.
| |
Collapse
|
27
|
Abstract
Stiripentol is a structurally unique antiepileptic drug that has several possible mechanisms of action, including diverse effects on the gamma-aminobutyric acid (GABA)-A receptor and novel inhibition of lactate dehydrogenase. Because of its inhibition of several cytochrome P450 enzymes, it has extensive pharmacokinetic interactions, which often necessitates reduction in doses of certain co-therapies, particularly clobazam. Stiripentol also has a neuroprotective action, by reducing calcium-mediated neurotoxicity. Evidence of its efficacy is most robust for Dravet syndrome, where stiripentol added to clobazam and valproic acid reduces seizure frequency and severity in the majority of cases. Small case series have also suggested benefit for malignant migrating partial seizures in infancy, super-refractory status epilepticus, and intractable focal epilepsy, although larger prospective studies are needed in these disorders.
Collapse
Affiliation(s)
- Katherine C Nickels
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
28
|
Balestrini S, Sisodiya SM. Pharmacogenomics in epilepsy. Neurosci Lett 2017; 667:27-39. [PMID: 28082152 PMCID: PMC5846849 DOI: 10.1016/j.neulet.2017.01.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/12/2022]
Abstract
Genetic variation can influence response to antiepileptic drug (AED) treatment through various effector processes. Metabolism of many AEDs is mediated by the cytochrome P450 (CYP) family; some of the CYPs have allelic variants that may affect serum AED concentrations. ‘Precision medicine’ focuses on the identification of an underlying genetic aetiology allowing personalised therapeutic choices. Certain human leukocyte antigen, HLA, alleles are associated with an increased risk of idiosyncratic adverse drug reactions. New results are emerging from large-scale multinational efforts, likely imminently to add knowledge of value from a pharmacogenetic perspective.
There is high variability in the response to antiepileptic treatment across people with epilepsy. Genetic factors significantly contribute to such variability. Recent advances in the genetics and neurobiology of the epilepsies are establishing the basis for a new era in the treatment of epilepsy, focused on each individual and their specific epilepsy. Variation in response to antiepileptic drug treatment may arise from genetic variation in a range of gene categories, including genes affecting drug pharmacokinetics, and drug pharmacodynamics, but also genes held to actually cause the epilepsy itself. From a purely pharmacogenetic perspective, there are few robust genetic findings with established evidence in epilepsy. Many findings are still controversial with anecdotal or less secure evidence and need further validation, e.g. variation in genes for transporter systems and antiepileptic drug targets. The increasing use of genetic sequencing and the results of large-scale collaborative projects may soon expand the established evidence. Precision medicine treatments represent a growing area of interest, focussing on reversing or circumventing the pathophysiological effects of specific gene mutations. This could lead to a dramatic improvement of the effectiveness and safety of epilepsy treatments, by targeting the biological mechanisms responsible for epilepsy in each specific individual. Whilst much has been written about epilepsy pharmacogenetics, there does now seem to be building momentum that promises to deliver results of use in clinic.
Collapse
Affiliation(s)
- Simona Balestrini
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, and Epilepsy Society, Chalfont-St-Peter, Bucks, United Kingdom; Neuroscience Department, Polytechnic University of Marche, Ancona, Italy
| | - Sanjay M Sisodiya
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, and Epilepsy Society, Chalfont-St-Peter, Bucks, United Kingdom.
| |
Collapse
|
29
|
Balestrini S, Sisodiya SM. Audit of use of stiripentol in adults with Dravet syndrome. Acta Neurol Scand 2017; 135:73-79. [PMID: 27231140 PMCID: PMC5157719 DOI: 10.1111/ane.12611] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2016] [Indexed: 11/29/2022]
Abstract
Objectives There are very few data available in the literature on the use of stiripentol in adults with Dravet syndrome (DS). DS cases are increasingly recognized in adulthood, and more children with DS now survive to adulthood. The aim of the study was to document the effectiveness and tolerability of stiripentol in adults with DS. Material and methods We conducted an observational clinical audit in the epilepsy service of the National Hospital for Neurology and Neurosurgery, London (UK). Results We included 13 adult subjects with DS (eight females, five males). The responder (defined as more than 50% reduction in all seizure types) rate was 3/13 (23%) at 36 months. The following other outcomes were reported: seizure exacerbation (3/13, 23%), no change (3/13, 23%), less than 50% reduction in seizures (2/13, 15%), more than 50% reduction in generalized tonic‐clonic seizures but no other seizure types (1/13, 8%), undefined response (1/13, 8%). The retention rate was 62% after 1 year and 31% after 5 years. Adverse effects were reported in 7/13 (54%): the most frequent were anorexia, weight loss, unsteadiness and tiredness. Withdrawal due to adverse effects occurred in 3/13 (23%). Conclusions Compared with previous studies on children with DS, our results show a lower responder rate and a similar tolerability profile. Stiripentol can be effective with a good tolerability profile. Our audit is small, but supports the use of stiripentol in adults with DS when first‐line treatments are ineffective or not tolerated, in keeping with published guidelines.
Collapse
Affiliation(s)
- S. Balestrini
- Department of Clinical and Experimental Epilepsy; NIHR University College London Hospitals Biomedical Research Centre; UCL Institute of Neurology; London UK
- Epilepsy Society; Chalfont-St-Peter Buckinghamshire UK
- Neuroscience Department; Polytechnic University of Marche; Ancona Italy
| | - S. M. Sisodiya
- Department of Clinical and Experimental Epilepsy; NIHR University College London Hospitals Biomedical Research Centre; UCL Institute of Neurology; London UK
- Epilepsy Society; Chalfont-St-Peter Buckinghamshire UK
| |
Collapse
|