1
|
Firestone E, Sonoda M, Kuroda N, Sakakura K, Jeong JW, Lee MH, Wada K, Takayama Y, Iijima K, Iwasaki M, Miyazaki T, Asano E. Sevoflurane-induced high-frequency oscillations, effective connectivity and intraoperative classification of epileptic brain areas. Clin Neurophysiol 2023; 150:17-30. [PMID: 36989866 PMCID: PMC10192072 DOI: 10.1016/j.clinph.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE To determine how sevoflurane anesthesia modulates intraoperative epilepsy biomarkers on electrocorticography, including high-frequency oscillation (HFO) effective connectivity (EC), and to investigate their relation to epileptogenicity and anatomical white matter. METHODS We studied eight pediatric drug-resistant focal epilepsy patients who achieved seizure control after invasive monitoring and resective surgery. We visualized spatial distributions of the electrocorticography biomarkers at an oxygen baseline, three time-points while sevoflurane was increasing, and at a plateau of 2 minimum alveolar concentration (MAC) sevoflurane. HFO EC was combined with diffusion-weighted imaging, in dynamic tractography. RESULTS Intraoperative HFO EC diffusely increased as a function of sevoflurane concentration, although most in epileptogenic sites (defined as those included in the resection); their ability to classify epileptogenicity was optimized at sevoflurane 2 MAC. HFO EC could be visualized on major white matter tracts, as a function of sevoflurane level. CONCLUSIONS The results strengthened the hypothesis that sevoflurane-activated HFO biomarkers may help intraoperatively localize the epileptogenic zone. SIGNIFICANCE Our results help characterize how HFOs at non-epileptogenic and epileptogenic networks respond to sevoflurane. It may be warranted to establish a normative HFO atlas incorporating the modifying effects of sevoflurane and major white matter pathways, as critical reference in epilepsy presurgical evaluation.
Collapse
Affiliation(s)
- Ethan Firestone
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, University of Tsukuba, Tsukuba 3058575, Japan
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Min-Hee Lee
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA
| | - Keiko Wada
- Department of Anesthesiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan; Department of Anesthesiology and Critical Care, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan
| | - Yutaro Takayama
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan; Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan
| | - Keiya Iijima
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan
| | - Tomoyuki Miyazaki
- Department of Anesthesiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan; Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
2
|
Biomarkers of Drug Resistance in Temporal Lobe Epilepsy in Adults. Metabolites 2023; 13:metabo13010083. [PMID: 36677008 PMCID: PMC9866293 DOI: 10.3390/metabo13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy in adults. Experimental and clinical data indicate that neuroinflammation and neurodegeneration accompanying epileptogenesis make a significant contribution to the chronicity of epilepsy and the development of drug resistance in TLE cases. Changes in plasma and serum concentrations of proteins associated with neuroinflammation and neurodegeneration can be predictive biomarkers of the course of the disease. This study used an enzyme-linked immunosorbent assay of the following plasma proteins: brain-derived neurotrophic factor (BDNF), tumor necrosis factor alpha (TNFa), and high-mobility group protein B1 (HMGB1) in patients with mesial TLE to search for biomarkers of the disease. The objective of the study was to examine biomarkers of the neuroinflammation and neurodegeneration of plasma: BDNF, TNFa, and HMGB1. The aim of the study was to identify changes in the concentration of circulating pro-inflammatory and neurotrophic factors that are prognostically significant for the development of drug resistance and the course of TLE. A decrease in the concentration of BDNF, TNFa, and HMGB1 was registered in the group of patients with TLE compared with the control group. A significant decrease in the concentration of HMGB1 in patients with drug-resistant TLE was observed. Aberrations in plasma concentrations of BDNF, TNFa, and HMGB1 in patients with TLE compared with the controls have been confirmed by earlier studies. A decrease in the expression of the three biomarkers may be the result of neurodegenerative processes caused by the long course of the disease. The results of the study may indicate the acceptability of using HMGB1 and TNFa as prognostic biological markers to indicate the severity of the disease course and the risk of developing drug resistance.
Collapse
|
3
|
Ma L, Liu G, Zhang P, Wang J, Huang W, Jiang Y, Zheng Y, Han N, Zhang Z, Zhang J. Altered Cerebro-Cerebellar Effective Connectivity in New-Onset Juvenile Myoclonic Epilepsy. Brain Sci 2022; 12:brainsci12121658. [PMID: 36552118 PMCID: PMC9775154 DOI: 10.3390/brainsci12121658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Objective: Resting-state fMRI studies have indicated that juvenile myoclonic epilepsy (JME) could cause widespread functional connectivity disruptions between the cerebrum and cerebellum. However, the directed influences or effective connectivities (ECs) between these brain regions are poorly understood. In the current study, we aimed to evaluate the ECs between the cerebrum and cerebellum in patients with new-onset JME. (2) Methods: Thirty-four new-onset JME patients and thirty-four age-, sex-, and education-matched healthy controls (HCs) were included in this study. We compared the degree centrality (DC) between the two groups to identify intergroup differences in whole-brain functional connectivity. Then, we used a Granger causality analysis (GCA) to explore JME-caused changes in EC between cerebrum regions and cerebellum regions. Furthermore, we applied a correlation analysis to identify associations between aberrant EC and disease severity in patients with JME. (3) Results: Compared to HCs, patients with JME showed significantly increased DC in the left cerebellum posterior lobe (CePL.L), the right inferior temporal gyrus (ITG.R) and the right superior frontal gyrus (SFG.R), and decreased DC in the left inferior frontal gyrus (IFG.L) and the left superior temporal gyrus (STG.L). The patients also showed unidirectionally increased ECs from cerebellum regions to the cerebrum regions, including from the CePL.L to the right precuneus (PreCU.R), from the left cerebellum anterior lobe (CeAL.L) to the ITG.R, from the right cerebellum posterior lobe (CePL.R) to the IFG.L, and from the left inferior semi-lunar lobule of the cerebellum (CeISL.L) to the SFG.R. Additionally, the EC from the CeISL.L to the SFG.R was negatively correlated with the disease severity. (4) Conclusions: JME patients showed unidirectional EC disruptions from the cerebellum to the cerebrum, and the negative correlation between EC and disease severity provides a new perspective for understanding the cerebro-cerebellar neural circuit mechanisms in JME.
Collapse
Affiliation(s)
- Laiyang Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Pengfei Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Jun Wang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Wenjing Huang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Yanli Jiang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Yu Zheng
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Na Han
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Zhe Zhang
- School of Physics, Hangzhou Normal University, Hangzhou 311121, China
- Institute of Brain Science, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (Z.Z.); (J.Z.); Tel.: +86-0571-28861955 (Z.Z.); +86-0931-8942090 (J.Z.)
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
- Correspondence: (Z.Z.); (J.Z.); Tel.: +86-0571-28861955 (Z.Z.); +86-0931-8942090 (J.Z.)
| |
Collapse
|
4
|
Fleury M, Buck S, Binding LP, Caciagli L, Vos SB, Winston GP, Thompson P, Koepp MJ, Duncan JS, Sidhu MK. Episodic memory network connectivity in temporal lobe epilepsy. Epilepsia 2022; 63:2597-2622. [PMID: 35848050 PMCID: PMC9804196 DOI: 10.1111/epi.17370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) affects brain networks and is associated with impairment of episodic memory. Temporal and extratemporal reorganization of memory functions is described in functional magnetic resonance imaging (fMRI) studies. Functional reorganizations have been shown at the local activation level, but network-level alterations have been underinvestigated. We aim to investigate the functional anatomy of memory networks using memory fMRI and determine how this relates to memory function in TLE. METHODS Ninety patients with unilateral TLE (43 left) and 29 controls performed a memory-encoding fMRI paradigm of faces and words with subsequent out-of-scanner recognition test. Subsequent memory event-related contrasts of words and faces remembered were generated. Psychophysiological interaction analysis investigated task-associated changes in functional connectivity seeding from the mesial temporal lobes (MTLs). Correlations between changes in functional connectivity and clinical memory scores, epilepsy duration, age at epilepsy onset, and seizure frequency were investigated, and between connectivity supportive of better memory and disease burden. Connectivity differences between controls and TLE, and between TLE with and without hippocampal sclerosis, were explored using these confounds as regressors of no interest. RESULTS Compared to controls, TLE patients showed widespread decreased connectivity between bilateral MTLs and frontal lobes, and increased local connectivity between the anterior MTLs bilaterally. Increased intrinsic connectivity within the bilateral MTLs correlated with better out-of-scanner memory performance in both left and right TLE. Longer epilepsy duration and higher seizure frequency were associated with decreased connectivity between bilateral MTLs and left/right orbitofrontal cortex (OFC) and insula, connections supportive of memory functions. TLE due to hippocampal sclerosis was associated with greater connectivity disruption within the MTL and extratemporally. SIGNIFICANCE Connectivity analyses showed that TLE is associated with temporal and extratemporal memory network reorganization. Increased bilateral functional connectivity within the MTL and connectivity to OFC and insula are efficient, and are disrupted by greater disease burden.
Collapse
Affiliation(s)
- Marine Fleury
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Sarah Buck
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Lawrence P. Binding
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Department of Computer Science, Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Lorenzo Caciagli
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sjoerd B. Vos
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Neuroradiological Academic Unit, University College London Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Gavin P. Winston
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Division of Neurology, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - Pamela J. Thompson
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Matthias J. Koepp
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - John S. Duncan
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Meneka K. Sidhu
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| |
Collapse
|
5
|
Wang K, Xie F, Liu C, Tan L, He J, Hu P, Zhang M, Wang G, Chen F, Xiao B, Liao W, Long L. Abnormal functional connectivity profiles predict drug responsiveness in patients with temporal lobe epilepsy. Epilepsia 2021; 63:463-473. [PMID: 34874064 DOI: 10.1111/epi.17142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This work was undertaken to study the functional connectivity differences between non-seizure-free and seizure-free patients with temporal lobe epilepsy (TLE) and to identify imaging predictors for drug responsiveness in TLE. METHODS In this prospective study, 52 patients with TLE who presented undetermined antiseizure medication responsiveness and 55 demographically matched healthy controls were sequentially recruited from Xiangya Hospital. Functional magnetic resonance imaging data were acquired during a Chinese version of the verbal fluency task. The patients were followed up until the outcome could be classified. The subject groups were compared in terms of activation profile, task-residual functional connectivity (trFC), and generalized psychophysiological interaction (gPPI) analyses. Moreover, we extracted imaging characteristics for logistic regression and receiver operating characteristic evaluation. RESULTS With a mean follow-up of 1.1 years, we identified 27 non-seizure-free patients and 19 seizure-free patients in the final analyses. The Chinese character verbal fluency task successfully activated the language network and cognitive control network (CCN) and deactivated the default mode network (DMN). In the non-seizure-freedom group, the trFC between the hippocampus and bilateral brain networks was attenuated (p < .05, familywise error corrected). For the gPPI analysis, group differences were mainly located in the precuneus, middle frontal gyrus, and inferior parietal lobule (p < .001, uncorrected; k ≥ 10). The regression model presented high accuracy when predicting non-seizure-free patients (area under the curve = .879, 95% confidence interval = .761-.998). SIGNIFICANCE In patients with TLE who would not achieve seizure freedom with current antiseizure medications, the functional connectivity between the hippocampus and central nodes of the DMN, CCN, and language network was disrupted, leading to language decline. Independent of hippocampal sclerosis, abnormalities, especially the effective connectivity from the hippocampus to the DMN, were predictive biomarkers of drug responsiveness in patients with TLE.
Collapse
Affiliation(s)
- Kangrun Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fangfang Xie
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Chaorong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Langzi Tan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jialinzi He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Hu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Min Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Fenghua Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Cho KH, Lee HJ, Heo K, Kim SE, Lee DA, Park KM. Intrinsic Thalamic Network in Temporal Lobe Epilepsy With Hippocampal Sclerosis According to Surgical Outcomes. Front Neurol 2021; 12:721610. [PMID: 34512532 PMCID: PMC8429827 DOI: 10.3389/fneur.2021.721610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
Background: The aim of this study was to identify the differences of intrinsic amygdala, hippocampal, or thalamic networks according to surgical outcomes in temporal lobe epilepsy (TLE) patients with hippocampal sclerosis (HS). Methods: We enrolled 69 pathologically confirmed TLE patients with HS. All patients had pre-operative three-dimensional T1-weighted MRI using a 3.0 T scanner. We obtained the structural volumes of the amygdala nuclei, hippocampal subfields, and thalamic nuclei. Then, we investigated the intrinsic networks based on volumes of these structures using structural covariance and graph theoretical analysis. Results: Of the 69 TLE patients with HS, 21 patients (42.1%) had poor surgical outcomes, whereas 40 patients (57.9%) had good surgical outcomes. The volumes in the amygdala nuclei, hippocampal subfields, and thalamic nuclei were not different according to surgical outcome. In addition, the intrinsic amygdala and hippocampal networks were not different between the patients with poor and good surgical outcomes. However, there was a significant difference in the intrinsic thalamic network in the ipsilateral hemisphere between them. The eccentricity and small-worldness index were significantly increased, whereas the characteristic path length was decreased in the patients with poor surgical outcomes compared to those with good surgical outcomes. Conclusion: We successfully demonstrated significant differences in the intrinsic thalamic network in the ipsilateral hemisphere between TLE patients with HS with poor and good surgical outcomes. This result suggests that the pre-operative intrinsic thalamic network can be related with surgical outcomes in TLE patients with HS.
Collapse
Affiliation(s)
- Kyoo Ho Cho
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Kyoung Heo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Eun Kim
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| |
Collapse
|
7
|
Lee DA, Lee HJ, Kim HC, Park KM. Temporal lobe epilepsy with or without hippocampal sclerosis: Structural and functional connectivity using advanced MRI techniques. J Neuroimaging 2021; 31:973-980. [PMID: 34110654 DOI: 10.1111/jon.12898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to investigate the differences in structural connectivity based on diffusion tensor imaging (DTI) and functional connectivity based on arterial spin labeling (ASL) MRI between temporal lobe epilepsy (TLE) patients with and without hippocampal sclerosis (HS). METHODS We enrolled 50 patients with TLE, including 25 patients with HS and 25 patients without HS, who underwent brain MRI, including DTI and ASL. We calculated the network parameters of structural connectivity based on DTI and functional connectivity based on ASL using a graph theoretical analysis. The parameters included global network measures (radius, diameter, characteristic path length, global efficiency, local efficiency, mean clustering coefficient, transitivity, assortative coefficient, and small-worldness index) and a local network measure (betweenness centrality). RESULTS The global and local network measures of structural connectivity were not different between TLE patients with and without HS. However, significant differences in functional connectivity existed between the two groups. The radius and diameter of the global network measures in the TLE patients with HS were significantly increased compared with those without HS (4.140 vs. 3.140, p = 0.045; 6.812 vs. 5.132, p = 0.049; respectively). No differences were detected between other global network measures of functional connectivity and local network measure. CONCLUSIONS Significant differences in global network measures of functional connectivity based on ASL existed between TLE patients with and without HS. These findings suggest that TLE patients with HS exhibit a more disconnected functional brain network than those without HS.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology and Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Hyung Chan Kim
- Department of Neurology and Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology and Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
8
|
Effective connectivity alteration according to recurrence in transient global amnesia. Neuroradiology 2021; 63:1441-1449. [PMID: 33486582 DOI: 10.1007/s00234-021-02645-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 01/26/2023]
Abstract
PURPOSE This study aimed to evaluate alterations in structural covariance network and effective connectivity of the intrahippocampal circuit in patients with transient global amnesia (TGA). We also investigated whether there were differences of them according to recurrence. METHODS We enrolled 88 patients with TGA and 50 healthy controls. We classified patients with TGA into two groups: the single event group (N = 77) and recurrent events group (N = 11). We performed volumetric analysis using the FreeSurfer program and structural covariance network analysis based on the structural volumes using a graph theoretical analysis in patients with TGA and healthy controls. The effective connectivity of the intrahippocampal circuit was also evaluated using structural equation modeling. RESULTS There were no significant differences between patients with all TGA events/a single TGA event and healthy controls with regard to global structural covariance network. However, patients with recurrent events had significant alterations in global structural covariance network with a decrease in the small-worldness index (0.907 vs. 0.970, p = 0.032). In patients with all events/a single, there were alterations in effective connectivity from the entorhinal cortex to CA4, only. However, in patients with recurrent events, there were alterations in effective connectivity from the subiculum to the fimbria as well as from the entorhinal cortex to CA4 in bilateral hemispheres. CONCLUSION Our study revealed significant alterations in structural covariance network and disruption of the intrahippocampal circuit in patients with TGA compared to healthy controls, which is more prominent when amnestic events recurred. It could be related to the pathogenesis of TGA.
Collapse
|
9
|
Lee HJ, Park KM. Intrinsic hippocampal and thalamic networks in temporal lobe epilepsy with hippocampal sclerosis according to drug response. Seizure 2020; 76:32-38. [PMID: 31986443 DOI: 10.1016/j.seizure.2020.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/31/2019] [Accepted: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The aim of this study was to investigate whether intrinsic hippocampal or thalamic networks in patients with temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) were different according to antiepileptic drug (AED) response. METHODS We enrolled 80 patients with TLE with HS and 40 healthy controls. Of the patients with TLE with HS, 43 were classified as a drug-resistant epilepsy (DRE) group, whereas 37 patients were enrolled as a drug-controlled epilepsy (DCE) group. We investigated the structural connectivity of the global brain, intrinsic hippocampal, and intrinsic thalamic networks based on structural volumes in the patients with DRE and DCE, and analyzed the differences between them. RESULTS There were significant alterations of the intrinsic hippocampal network compared with healthy controls. The average degree and the global efficiency were decreased, whereas the characteristic path length was increased in the patients with DRE compared with those in healthy controls. In the patients with DCE, only the small-worldness index was decreased compared with healthy controls. Compared to the patients with DCE, the mean clustering coefficient was increased in the patients with DRE. CONCLUSION We found that the intrinsic hippocampal network in patients with TLE with HS was different according to AED response. The patients with DRE had more severe disruptions of the intrinsic hippocampal network than those with DCE compared with healthy controls. These findings suggested that the hippocampal network might be related to AED response and could be a new biomarker of medical outcome in patients with TLE with HS.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
10
|
Quantification of thalamic nuclei in patients diagnosed with temporal lobe epilepsy and hippocampal sclerosis. Neuroradiology 2019; 62:185-195. [DOI: 10.1007/s00234-019-02299-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/01/2019] [Indexed: 12/23/2022]
|
11
|
Kreilkamp BAK, Weber B, Elkommos SB, Richardson MP, Keller SS. Hippocampal subfield segmentation in temporal lobe epilepsy: Relation to outcomes. Acta Neurol Scand 2018; 137:598-608. [PMID: 29572865 PMCID: PMC5969077 DOI: 10.1111/ane.12926] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2018] [Indexed: 12/24/2022]
Abstract
Objective To investigate the clinical and surgical outcome correlates of preoperative hippocampal subfield volumes in patients with refractory temporal lobe epilepsy (TLE) using a new magnetic resonance imaging (MRI) multisequence segmentation technique. Methods We recruited 106 patients with TLE and hippocampal sclerosis (HS) who underwent conventional T1‐weighted and T2 short TI inversion recovery MRI. An automated hippocampal segmentation algorithm was used to identify twelve subfields in each hippocampus. A total of 76 patients underwent amygdalohippocampectomy and postoperative seizure outcome assessment using the standardized ILAE classification. Semiquantitative hippocampal internal architecture (HIA) ratings were correlated with hippocampal subfield volumes. Results Patients with left TLE had smaller volumes of the contralateral presubiculum and hippocampus‐amygdala transition area compared to those with right TLE. Patients with right TLE had reduced contralateral hippocampal tail volumes and improved outcomes. In all patients, there were no significant relationships between hippocampal subfield volumes and clinical variables such as duration and age at onset of epilepsy. There were no significant differences in any hippocampal subfield volumes between patients who were rendered seizure free and those with persistent postoperative seizure symptoms. Ipsilateral but not contralateral HIA ratings were significantly correlated with gross hippocampal and subfield volumes. Conclusions Our results suggest that ipsilateral hippocampal subfield volumes are not related to the chronicity/severity of TLE. We did not find any hippocampal subfield volume or HIA rating differences in patients with optimal and unfavorable outcomes. In patients with TLE and HS, sophisticated analysis of hippocampal architecture on MRI may have limited value for prediction of postoperative outcome.
Collapse
Affiliation(s)
- B. A. K. Kreilkamp
- Department of Molecular and Clinical Pharmacology; Institute of Translational Medicine; University of Liverpool; Liverpool UK
- Department of Neuroradiology; The Walton Centre NHS Foundation Trust; Liverpool UK
| | - B. Weber
- Department of Epileptology; University of Bonn; Bonn Germany
- Center for Economics and Neuroscience; University of Bonn; Bonn Germany
- Department of NeuroCognition/Imaging; Life& Brain Research Center; Bonn Germany
| | - S. B. Elkommos
- Department of Molecular and Clinical Sciences; St George's, University of London; London UK
| | - M. P. Richardson
- Department of Basic and Clinical Neuroscience; Institute of Psychiatry, Psychology & Neuroscience; King's College London; London UK
- Engineering and Physical Sciences Research Council Centre for Predictive Modelling in Healthcare; University of Exeter; Exeter UK
| | - S. S. Keller
- Department of Molecular and Clinical Pharmacology; Institute of Translational Medicine; University of Liverpool; Liverpool UK
- Department of Neuroradiology; The Walton Centre NHS Foundation Trust; Liverpool UK
- Department of Basic and Clinical Neuroscience; Institute of Psychiatry, Psychology & Neuroscience; King's College London; London UK
| |
Collapse
|
12
|
Lee HH, Seo HG, Kim KD, Lee SH, Lee WH, Oh BM, Lee WW, Kim Y, Kim A, Kim HJ, Jeon B, Han TR. Characteristics of Early Oropharyngeal Dysphagia in Patients with Multiple System Atrophy. NEURODEGENER DIS 2018; 18:84-90. [PMID: 29621788 DOI: 10.1159/000487800] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/16/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND/AIMS Dysphagia, a symptom of multiple system atrophy (MSA), is a major clinical concern. In this study, we investigate the characteristics of early oropharyngeal dysphagia (OD) in patients with MSA, and the differences between MSA subtypes. METHODS Patients enrolled in the study had previously been diagnosed with MSA at the clinic of the Department of Neurology, and had been referred for a videofluoroscopic swallowing study (VFSS), between 2005 and 2014, to check for dysphagia. The clinical characteristics and VFSS findings were analyzed and compared between the MSA subtypes. RESULTS This study enrolled 59 patients with MSA (24 men; 31 with MSA-P, 21 with MSA-C, and 7 with MSA-PC). Dysphagia symptoms were mostly limited to aspiration symptoms (90.48%) in patients with MSA-C, while difficulty in swallowing, increased mealtime, and drooling were frequent in those with MSA-P. The most common VFSS finding amongst patients was vallecular residue (n = 53, 89.8%), followed by penetration/aspiration (n = 40, 67.8%), and coating of the pharyngeal wall (n = 39, 66.1%). Comparison analysis between subtypes showed that apraxia and vallecular residue were more frequent and severe in MSA-P than in MSA-C (p = 0.033 and p = 0.010, respectively). CONCLUSION Understanding early OD characteristics in patients with MSA and the differences between MSA subtypes could be helpful in managing dysphagia in patients with MSA. Several dysphagia symptoms similar to those of Parkinson disease were frequently observed in MSA-P, but not in MSA-C. A follow-up study is needed to elucidate the natural course of OD in MSA patients and the difference between MSA subtypes.
Collapse
Affiliation(s)
- Hyun Haeng Lee
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Jongno-Gu, Seoul, Republic of Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Jongno-Gu, Seoul, Republic of Korea
| | - Kwang-Dong Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Jongno-Gu, Seoul, Republic of Korea
| | - Seung Hak Lee
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Jongno-Gu, Seoul, Republic of Korea
| | - Woo Hyung Lee
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Jongno-Gu, Seoul, Republic of Korea.,Department of Biomedical Engineering, Seoul National University College of Medicine, Jongno-Gu, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Jongno-Gu, Seoul, Republic of Korea
| | - Woong-Woo Lee
- Department of Neurology, Nowon Eulji Medical Center, Eulji University, Nowon-Gu, Seoul, Republic of Korea
| | - Yoon Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Hospital, Jongno-Gu, Seoul, Republic of Korea
| | - Aryun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Hospital, Jongno-Gu, Seoul, Republic of Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Hospital, Jongno-Gu, Seoul, Republic of Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Hospital, Jongno-Gu, Seoul, Republic of Korea
| | - Tai Ryoon Han
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Jongno-Gu, Seoul, Republic of Korea
| |
Collapse
|