1
|
Föttinger F, Krajnc N, Riedl K, Leutmezer F, Ponleitner M, Rommer P, Kornek B, Macher S, Schmied C, Zebenholzer K, Zulehner G, Zrzavy T, Berger T, Bsteh G. Autoimmune screening panel in patients with multiple sclerosis: A Vienna multiple sclerosis database study. Eur J Neurol 2025; 32:e16558. [PMID: 39601436 PMCID: PMC11625921 DOI: 10.1111/ene.16558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND PURPOSE Autoimmune screening panels (ASPs) are often ordered as a part of the diagnostic workup in people with suspected multiple sclerosis (MS). However, data on the significance of ASP seropositivity in MS are scarce. This study aimed to investigate whether routine implementation of ASPs is viable in MS diagnostic workup. METHODS In this retrospective study, we included patients from the Vienna Multiple Sclerosis Database who were diagnosed with MS according to current McDonald criteria between 2014 and 2021 and had an ASP performed. RESULTS We analyzed 212 patients (mean age at serology = 30.4 [SD = 8.5] years, 67% female). Red flag symptoms for presence of systemic autoimmune disease were reported by 5.6% of patients during initial evaluation (sicca syndrome [n = 5], joint pain [n = 4], dermatitis [n = 4]). Complement levels (C3c and C4) were below the lower reference level in 26 of 134 (19.4%) and three of 134 (2.2%), respectively. Antinuclear antibodies (ANAs) were positive in 24 of 210 (11.4%), with 18 (8.6%), five (2.4%), and one (0.5%) having mildly, moderately, and strongly positive ANA titers. Extractable nuclear antibody subsets were positive in 10 of 211 (4.7%) patients. ASPs led to the diagnosis of mixed connective tissue disease (n = 1), psoriatic arthritis (n = 1), and Sjögren syndrome (n = 2; positive predictive value [PPV] = 4.9%, negative predictive value [NPV] = 99.3%). Among patients presenting with red flag symptoms, ASPs had better overall test performance (PPV = 100%, NPV = 88.9%). CONCLUSIONS The rate of ASP seropositivity in MS is low and within the range of the general population. Performance of ASPs without clinical suspicion of systemic autoimmune disease seems unwarranted.
Collapse
Affiliation(s)
- Fabian Föttinger
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Nik Krajnc
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Katharina Riedl
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Fritz Leutmezer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Markus Ponleitner
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Paulus Rommer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Barbara Kornek
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Stefan Macher
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Christiane Schmied
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Karin Zebenholzer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Gudrun Zulehner
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Tobias Zrzavy
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Thomas Berger
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Gabriel Bsteh
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| |
Collapse
|
2
|
Jendretzky KF, Lezius LM, Thiele T, Konen FF, Huss A, Heitmann L, Güzeloglu YE, Schwenkenbecher P, Sühs KW, Skuljec J, Wattjes MP, Witte T, Kleinschnitz C, Pul R, Tumani H, Gingele S, Skripuletz T. Prevalence of comorbid autoimmune diseases and antibodies in newly diagnosed multiple sclerosis patients. Neurol Res Pract 2024; 6:55. [PMID: 39533435 PMCID: PMC11556020 DOI: 10.1186/s42466-024-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Diagnosing multiple sclerosis (MS) is challenging due to diverse symptoms and the absence of specific biomarkers. Concurrent autoimmune diseases (AID) or non-specific antibodies further complicate diagnosis, progression monitoring, and management. Data on AID prevalence in MS patients are sparse. This study aims to identify concurrent AIDs alongside MS. METHODS In this retrospective single-center study, we analyzed patient records at our university hospital from 2010 to 2017, focusing on cases suspected of inflammatory demyelinating disease. The 2017 McDonald criteria were applied. Additionally, we measured neurofilament light (NfL) levels from available CSF samples in our biobank. RESULTS We identified a total of 315 patients, of whom 66% were women. In total, 13.7% of all patients had concurrent AID, while 20.3% had isolated antibody findings without AID. The most common AID was autoimmune thyroiditis (8.9%), followed by chronic inflammatory skin diseases (1.6%), arthritis (1%), type 1 diabetes (1%), Sjögren's syndrome (0.6%), and inflammatory bowel diseases (0.6%). Cardiolipin antibodies were the most frequent isolated antibody finding (8.6%). Our data showed that, from the perspective of the initial demyelinating event, neither comorbid AID nor isolated antibodies significantly influenced relapses or MS progression over a median follow-up of 9 months. Standard CSF parameters and NfL levels were similar between the groups at the time of MS diagnosis. CONCLUSION Our study shows that AIDs, particularly autoimmune thyroiditis, frequently occur at the onset of MS. The proportion of AIDs commonly treated with immunomodulatory therapy in our cohort was similar to that observed in the general population. Comorbid AID did not affect NfL levels, indicating similar disease activity. Future research should explore new AID emergence during the course of MS, especially considering the increased incidence of rheumatic diseases later in life.
Collapse
Affiliation(s)
| | | | - Thea Thiele
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
| | | | - André Huss
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | - Lena Heitmann
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | | | | | - Jelena Skuljec
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, Essen, Germany
| | - Mike Peter Wattjes
- Department of Neuroradiology, Charité Berlin, Corporate Member of Freie Universität zu Berlin, Humboldt-Universität zu Berlin, erlin, Germany
| | - Torsten Witte
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, Essen, Germany
| | - Refik Pul
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, Essen, Germany
| | - Hayrettin Tumani
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Solomon AJ, Arrambide G, Brownlee WJ, Flanagan EP, Amato MP, Amezcua L, Banwell BL, Barkhof F, Corboy JR, Correale J, Fujihara K, Graves J, Harnegie MP, Hemmer B, Lechner-Scott J, Marrie RA, Newsome SD, Rocca MA, Royal W, Waubant EL, Yamout B, Cohen JA. Differential diagnosis of suspected multiple sclerosis: an updated consensus approach. Lancet Neurol 2023; 22:750-768. [PMID: 37479377 DOI: 10.1016/s1474-4422(23)00148-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 07/23/2023]
Abstract
Accurate diagnosis of multiple sclerosis requires careful attention to its differential diagnosis-many disorders can mimic the clinical manifestations and paraclinical findings of this disease. A collaborative effort, organised by The International Advisory Committee on Clinical Trials in Multiple Sclerosis in 2008, provided diagnostic approaches to multiple sclerosis and identified clinical and paraclinical findings (so-called red flags) suggestive of alternative diagnoses. Since then, knowledge of disorders in the differential diagnosis of multiple sclerosis has expanded substantially. For example, CNS inflammatory disorders that present with syndromes overlapping with multiple sclerosis can increasingly be distinguished from multiple sclerosis with the aid of specific clinical, MRI, and laboratory findings; studies of people misdiagnosed with multiple sclerosis have also provided insights into clinical presentations for which extra caution is warranted. Considering these data, an update to the recommended diagnostic approaches to common clinical presentations and key clinical and paraclinical red flags is warranted to inform the contemporary clinical evaluation of patients with suspected multiple sclerosis.
Collapse
Affiliation(s)
- Andrew J Solomon
- Department of Neurological Sciences, Larner College of Medicine at the University of Vermont, University Health Center, Burlington, VT, USA.
| | - Georgina Arrambide
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Wallace J Brownlee
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Eoin P Flanagan
- Departments of Neurology and Laboratory Medicine and Pathology and the Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Maria Pia Amato
- Department NEUROFARBA, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Lilyana Amezcua
- Department of Neurology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Brenda L Banwell
- Department of Neurology, University of Pennsylvania, Division of Child Neurology, Philadelphia, PA, USA; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - John R Corboy
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jorge Correale
- Department of Neurology, Fleni Institute of Biological Chemistry and Physical Chemistry (IQUIFIB), Buenos Aires, Argentina; National Council for Scientific and Technical Research/University of Buenos Aires, Buenos Aires, Argentina
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University School of Medicine, Koriyama, Japan; Multiple Sclerosis and Neuromyelitis Optica Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan
| | - Jennifer Graves
- Department of Neurosciences, University of California, San Diego, CA, USA
| | | | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Medical Faculty, Technische Universität München, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany
| | - Jeannette Lechner-Scott
- Department of Neurology, John Hunter Hospital, Newcastle, NSW Australia; Hunter Medical Research Institute Neurology, University of Newcastle, Newcastle, NSW, Australia
| | - Ruth Ann Marrie
- Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Scott D Newsome
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, Neurology Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Walter Royal
- Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Emmanuelle L Waubant
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Bassem Yamout
- Neurology Institute, Harley Street Medical Center, Abu Dhabi, United Arab Emirates
| | - Jeffrey A Cohen
- Mellen Center for MS Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
4
|
Sudheer P, Agarwal A, Vishnu VY. Antinuclear antibodies in neurology and their clinical application. QJM 2021:6447522. [PMID: 34865171 DOI: 10.1093/qjmed/hcab304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/20/2021] [Indexed: 11/14/2022] Open
Abstract
Antinuclear antibodies (ANA) are a diverse group of autoantibodies found in various systemic autoimmune disorders. They represent a key diagnostic marker in the diagnosis of connective tissue disorders (CTD). Although many techniques exist, ANA by Indirect Immunofluorescence (IIF) remains the gold standard for diagnosing CTDs. Neurologists should be aware of the type of assay used for detection and the advantages and disadvantages of using each method. Through this article, we aimed to review the methodological aspects of the detection of ANA and its subtypes and their clinical relevance in various neurologic disorders.
Collapse
Affiliation(s)
- Pachipala Sudheer
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Ayush Agarwal
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Venugopalan Y Vishnu
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Prevalence of antinuclear antibody in patients with multiple sclerosis: a case-control study. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00284-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Antinuclear antibody (ANA) is a common test for excluding alternative diagnoses. However, the significance of ANA testing in patients with multiple sclerosis (MS) remains unclear.
Objectives
To compare the prevalence of positive ANA antibody and its titer between patients with MS (cases) and non-MS patients who attended neurology clinics (control) in Saudi Arabia.
Methods
A case-control review of ANA results for all patients who attended a neurology MS clinic. We compared a convenience sample of patients with MS with individuals with general neurology problems and no known autoimmune diseases.
Results
There were 115 and 103 participants in the MS and control group, respectively. The mean age in the MS and control group was 33.76 ± 8.96 years and 34.95 ± 8.56 years, respectively. In the MS group, 25.22%, 60%, 11.30%, and 3.48% were negative, mildly positive, moderately positive, and strongly positive for ANA, respectively. In the control group, there were 34.95%, 54.37%, and 10.68% were negative, mild positive, and moderate positive, respectively. There were numerically, but not significantly, more positive cases in the MS group (74.78%) than in the control group (65.05%) (p = .117).
Conclusion
ANA testing in routine MS screening for excluding alternative diagnoses should be discouraged unless there is a remarkable history or clinical examination finding. Mild positive ANA is common among patients with MS and does not significantly differ from the general population.
Collapse
|