1
|
Qiu S, Liu T, Zhan Z, Li X, Liu X, Xin X, Lu J, Wu L, Wang L, Cui K, Xiu J. Revisiting the diagnostic and prognostic significance of high-frequency QRS analysis in cardiovascular diseases: a comprehensive review. Postgrad Med J 2024; 100:785-795. [PMID: 38796714 DOI: 10.1093/postmj/qgae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 05/28/2024]
Abstract
Cardiovascular diseases (CVDs) present a significant global public health threat, contributing to a substantial number of cases involving morbidity and mortality. Therefore, the early and accurate detection of CVDs plays an indispensable role in enhancing patient outcomes. Decades of extensive research on electrocardiography at high frequencies have yielded a wealth of knowledge regarding alterations in the QRS complex during myocardial ischemia, as well as the methodologies to assess and quantify these changes. In recent years, the analysis of high-frequency QRS (HF-QRS) components has emerged as a promising non-invasive approach for diagnosing various cardiovascular conditions. Alterations in HF-QRS amplitude and morphology have demonstrated remarkable sensitivity as diagnostic indicators for myocardial ischemia, often surpassing measures of ST-T segment changes. This comprehensive review aims to provide an intricate overview of the current advancements, challenges, and prospects associated with HF-QRS analysis in the field of CVDs.
Collapse
Affiliation(s)
- Shifeng Qiu
- Department of Cardiology, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
| | - Tinghui Liu
- Department of Cardiology, Southern Medical University, Nanfang Hospital Zengcheng Campus, Guangzhou 511340, China
| | - Zijin Zhan
- Department of Cardiology, Southern Medical University, Nanfang Hospital Zengcheng Campus, Guangzhou 511340, China
| | - Xue Li
- Department of Gastroenterology, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
| | - Xuewei Liu
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University or The First School of Clinical Medicine, Southern Medical University, Dongguan 523018, China
| | - Xiaoyu Xin
- Department of Cardiology, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
| | - Junyan Lu
- Department of Cardiology, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
| | - Lipei Wu
- Department of Cardiology, Southern Medical University, Nanfang Hospital Zengcheng Campus, Guangzhou 511340, China
| | - Li Wang
- Department of General Internal Medicine Unit One, Southern Medical University, Nanfang Hospital Zengcheng Campus, Guangzhou 511340, China
| | - Kai Cui
- Department of Cardiology, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
| | - Jiancheng Xiu
- Department of Cardiology, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
| |
Collapse
|
2
|
Galante O, Amit G, Granot Y, Davrath LR, Abboud S, Zahger D. High-frequency QRS analysis in the evaluation of chest pain in the emergency department. J Electrocardiol 2017; 50:457-465. [DOI: 10.1016/j.jelectrocard.2017.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 11/24/2022]
|
3
|
Leinveber P, Halamek J, Jurak P. Ambulatory monitoring of myocardial ischemia in the 21st century-an opportunity for high frequency QRS analysis. J Electrocardiol 2016; 49:902-906. [PMID: 27590215 DOI: 10.1016/j.jelectrocard.2016.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 10/21/2022]
Abstract
Ambulatory monitoring represents an effective tool for the assessment of silent and transient myocardial ischemia during routine daily activities. Incidence of silent ischemia can provide important prognostic information about patients with coronary artery disease or acute coronary syndrome, as well as about post-myocardial infarction patients. The current technological progress enables development of powerful and miniaturized wearable devices for Holter monitoring. Higher sampling rates, dynamic range, and extended computational and storage capacity allow for considering of more complex methodological solutions such as high-frequency QRS analysis for diagnosing myocardial ischemia. Implementation of suitable methodologies for advanced detection of myocardial ischemia into modern ambulatory monitoring devices creates the potential of making the ambulatory myocardial ischemia monitoring a valuable diagnostic tool in clinical practice.
Collapse
Affiliation(s)
- Pavel Leinveber
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic; Institute of Scientific Instruments of the Czech Academy of Sciences, Czech Republic.
| | - Josef Halamek
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic; Institute of Scientific Instruments of the Czech Academy of Sciences, Czech Republic
| | - Pavel Jurak
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic; Institute of Scientific Instruments of the Czech Academy of Sciences, Czech Republic
| |
Collapse
|
4
|
Jurak P, Halamek J, Plesinger F, Reichlova T, Vondra V, Viscor I, Leinveber P. Can we hear ventricle dyssynchrony? Yes, we can. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:6527-30. [PMID: 26737788 DOI: 10.1109/embc.2015.7319888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study introduces a method for detection of ventricular depolarization activity and the transfer of this activity into an audible stereo audio signal. Heart potentials are measured by an ultra-high-frequency high-dynamic-range electrocardiograph (UHF-ECG) with a 25-kHz sampling rate. Averaged and prolonged UHF amplitude envelopes of V1-3 and V4-6 leads at a frequency range of 500-1000 Hz are used as a modulating function for two carrier audio frequencies. The right speaker makes it possible to listen to the depolarization of the septum and right ventricle (V1-3) and the left speaker the left ventricle lateral wall (V4-6). In the healthy heart, both speakers can be heard simultaneously. A delayed L or R speaker represents the dyssynchronous electrical activation of the ventricles. Examples of the normal heart, right bundle branch block and left bundle branch block can be heard at www.medisig.com/uhfecg.
Collapse
|