1
|
Dhyani A, Repetto T, VanAken S, Nemzek J, VanEpps JS, Mehta G, Tuteja A. ANTIMICROBIAL WOUND DRESSINGS FOR FULL-THICKNESS INFECTED BURN WOUNDS. Shock 2024; 62:588-595. [PMID: 39158545 DOI: 10.1097/shk.0000000000002426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
ABSTRACT Infection of wounds delays healing, increases treatment costs, and leads to major complications. Current methods to manage such infections include antibiotic ointments and antimicrobial wound dressings, both of which have significant drawbacks, including frequent reapplication and contribution to antimicrobial resistance. In this work, we developed wound dressings fabricated with a medical-grade polyurethane coating composed of natural plant secondary metabolites, cinnamaldehyde, and alpha-terpineol. Our wound dressings are easy to change and do not adhere to the wound bed. They kill gram-positive and -negative microbes in infected wounds due to the Food and Drug Administration-approved for human consumption components. The wound dressings were fabricated by dip coating. Antimicrobial efficacy was determined by quantifying the bacteria colonies after a 24 h of immersion. Wound healing and bacterial reduction were assessed in an in vivo full-thickness porcine burn model. Our antimicrobial wound dressings showed a > 5-log reduction (99.999%) of different gram-positive and gram-negative bacteria, while maintaining absorbency. In the in vivo porcine burn model, our wound dressings were superior to bacitracin in decreasing bacterial burden during daily changes, without interfering with wound healing. Additionally, the dressings had a significantly lower adhesion to the wound bed. Our antimicrobial wound dressings reduced the burden of clinically relevant bacteria more than commercial antimicrobial wound dressings. In an in vivo infected burn wound model, our coatings performed as well or better than bacitracin. We anticipate that our wound dressings would be useful for the treatment of various types of acute and chronic wounds.
Collapse
Affiliation(s)
| | | | - Shannon VanAken
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jean Nemzek
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | | |
Collapse
|
2
|
Shrestha S, Wang B, Dutta PK. Commercial Silver-Based Dressings: In Vitro and Clinical Studies in Treatment of Chronic and Burn Wounds. Antibiotics (Basel) 2024; 13:910. [PMID: 39335083 PMCID: PMC11429284 DOI: 10.3390/antibiotics13090910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic wounds are a major health problem because of delayed healing, causing hardships for the patient. The infection present in these wounds plays a role in delayed wound healing. Silver wound dressings have been used for decades, beginning in the 1960s with silver sulfadiazine for infection prevention for burn wounds. Since that time, there has been a large number of commercial silver dressings that have obtained FDA clearance. In this review, we examine the literature involving in vitro and in vivo (both animal and human clinical) studies with commercial silver dressings and attempt to glean the important characteristics of these dressings in treating infected wounds. The primary presentation of the literature is in the form of detailed tables. The narrative part of the review focuses on the different types of silver dressings, including the supporting matrix, the release characteristics of the silver into the surroundings, and their toxicity. Though there are many clinical studies of chronic and burn wounds using silver dressings that we discuss, it is difficult to compare the performances of the dressings directly because of the differences in the study protocols. We conclude that silver dressings can assist in wound healing, although it is difficult to provide general treatment guidelines. From a wound dressing point of view, future studies will need to focus on new delivery systems for silver, as well as the type of matrix in which the silver is deposited. Clearly, adding other actives to enhance the antimicrobial activity, including the disruption of mature biofilms is of interest. From a clinical point of view, the focus needs to be on the wound healing characteristics, and thus randomized control trials will provide more confidence in the results. The application of different wound dressings for specific wounds needs to be clarified, along with the application protocols. It is most likely that no single silver-based dressing can be used for all wounds.
Collapse
Affiliation(s)
| | - Bo Wang
- ZeoVation Inc., Columbus, OH 43212, USA; (S.S.); (B.W.)
| | - Prabir K. Dutta
- ZeoVation Inc., Columbus, OH 43212, USA; (S.S.); (B.W.)
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Almatroudi A. Unlocking the Potential of Silver Nanoparticles: From Synthesis to Versatile Bio-Applications. Pharmaceutics 2024; 16:1232. [PMID: 39339268 PMCID: PMC11435049 DOI: 10.3390/pharmaceutics16091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Silver nanoparticles (AgNPs) are leading the way in nanotechnological innovation, combining the captivating properties of silver with the accuracy of nanoscale engineering, thus revolutionizing material science. Three main techniques arise within the alchemical domains of AgNP genesis: chemical, physical, and biological synthesis. Each possesses its distinct form of magic for controlling size, shape, and scalability-key factors necessary for achieving expertise in the practical application of nanoparticles. The story unravels, describing the careful coordination of chemical reduction, the environmentally sensitive charm of green synthesis utilizing plant extracts, and the precise accuracy of physical techniques. AgNPs are highly praised in the field of healthcare for their powerful antibacterial characteristics. These little warriors display a wide-ranging attack against bacteria, fungi, parasites, and viruses. Their critical significance in combating hospital-acquired and surgical site infections is highly praised, serving as a beacon of hope in the fight against the challenging problem of antibiotic resistance. In addition to their ability to kill bacteria, AgNPs are also known to promote tissue regeneration and facilitate wound healing. The field of cancer has also observed the adaptability of AgNPs. The review documents their role as innovative carriers of drugs, specifically designed to target cancer cells with accuracy, minimizing harm to healthy tissues. Additionally, it explores their potential as cancer therapy or anticancer agents capable of disrupting the growth of tumors. In the food business, AgNPs are utilized to enhance the durability of packing materials and coatings by infusing them with their bactericidal properties. This results in improved food safety measures and a significant increase in the duration that products can be stored, thereby tackling the crucial issue of food preservation. This academic analysis recognizes the many difficulties that come with the creation and incorporation of AgNPs. This statement pertains to the evaluation of environmental factors and the effort to enhance synthetic processes. The review predicts future academic pursuits, envisioning progress that will enhance the usefulness of AgNPs and increase their importance from being new to becoming essential within the realms of science and industry. Besides, AgNPs are not only a subject of scholarly interest but also a crucial component in the continuous effort to tackle some of the most urgent health and conservation concerns of contemporary society. This review aims to explore the complex process of AgNP synthesis and highlight their numerous uses, with a special focus on their growing importance in the healthcare and food business sectors. This review invites the scientific community to explore the extensive possibilities of AgNPs in order to fully understand and utilize their potential.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
4
|
Li X, Xue X, Xie P. Smart Dressings and Their Applications in Chronic Wound Management. Cell Biochem Biophys 2024; 82:1965-1977. [PMID: 38969950 DOI: 10.1007/s12013-024-01402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
During chronic wound healing, the inflammatory phase can endure for extended periods, heavily impeding or halting the process. Regular inspections and dressing changes are crucial. Modern dressings like hydrogels, hydrocolloids, and foam provide protection and an optimal healing environment. However, they have limitations in offering real-time wound bed status and healing rate. Evaluation relies heavily on direct observation, and passive dressings fail to identify subtle healing differences, preventing adaptive adjustments in biological factors and drug concentrations. In recent years, the clinical field recognizes the value of integrating intelligent diagnostic tools into wound dressings. By monitoring biomarkers linked to chronic wounds' inflammatory state, real-time data can be captured, reducing medical interventions and enabling more effective treatment plans. This fosters innovation in chronic wound care. Researchers have developed smart dressings with sensing, active drug delivery, and self-adjustment capabilities. These dressings detect inflammatory markers like temperature, pH, and oxygen content, enhancing drug bioavailability on the wound surface. As wound healing technology evolves, these smart dressings hold immense potential in chronic wound care and treatment. This comprehensive review updates our understanding on the role and mechanism of action of the smart dressings in chronic refractory wounds by summarizing and discussing the latest research progresses, including the intelligent monitoring of wound oxygen content, temperature, humidity, pH, infection, and enzyme kinetics; intelligent drug delivery triggered by temperature, pH, near-infrared, and electricity; as well as the intelligent self-adjustment of pressure and shape. The review also delves into the constraints and future perspectives of smart dressings in clinical settings, thereby advancing the development of smart wound dressings for chronic wound healing and their practical application in clinical practice.
Collapse
Affiliation(s)
- Xiaodong Li
- Center for Cosmetic Surgery, General Hospital of Lanzhou Petrochemical Company (The Fourth Affiliated Hospital of Gansu University of Chinese Medicine), Lanzhou, 730060, Gansu, China
| | - Xiaodong Xue
- Department of Plastic Surgery, People's Hospital of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Peilin Xie
- Department of Plastic Surgery, People's Hospital of Gansu Province, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
5
|
Zhao X, Chen Z, Zhang S, Hu Z, Shan J, Wang M, Chen XL, Wang X. Application of metal-organic frameworks in infectious wound healing. J Nanobiotechnology 2024; 22:387. [PMID: 38951841 PMCID: PMC11218092 DOI: 10.1186/s12951-024-02637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Metal-organic frameworks (MOFs) are metal-organic skeleton compounds composed of self-assembled metal ions or clusters and organic ligands. MOF materials often have porous structures, high specific surface areas, uniform and adjustable pores, high surface activity and easy modification and have a wide range of prospects for application. MOFs have been widely used. In recent years, with the continuous expansion of MOF materials, they have also achieved remarkable results in the field of antimicrobial agents. In this review, the structural composition and synthetic modification of MOF materials are introduced in detail, and the antimicrobial mechanisms and applications of these materials in the healing of infected wounds are described. Moreover, the opportunities and challenges encountered in the development of MOF materials are presented, and we expect that additional MOF materials with high biosafety and efficient antimicrobial capacity will be developed in the future.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Zenghong Chen
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P. R. China
| | - Shuo Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Zhiyuan Hu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Min Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
| | - Xianwen Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China.
| |
Collapse
|
6
|
Torabi S, Hassanzadeh-Tabrizi SA. Effective antibacterial agents in modern wound dressings: a review. BIOFOULING 2024; 40:305-332. [PMID: 38836473 DOI: 10.1080/08927014.2024.2358913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
Wound infections are a significant concern in healthcare, leading to long healing times. Traditional approaches for managing wound infections rely heavily on systemic antibiotics, which are associated with the emergence of antibiotic-resistant bacteria. Therefore, the development of alternative antibacterial materials for wound care has gained considerable attention. In today's world, new generations of wound dressing are commonly used to heal wounds. These new dressings keep the wound and the area around it moist to improve wound healing. However, this moist environment can also foster an environment that is favorable for the growth of bacteria. Excessive antibiotic use poses a significant threat to human health and causes bacterial resistance, so new-generation wound dressings must be designed and developed to reduce the risk of infection. Wound dressings using antimicrobial compounds minimize wound bacterial colonization, making them the best way to avoid open wound infection. We aim to provide readers with a comprehensive understanding of the latest advancements in antibacterial materials for wound management.
Collapse
Affiliation(s)
- Sadaf Torabi
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Sayed Ali Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
7
|
Whitley A, Baláž P, Kavalírek J, Hanusová J, Gürlich R. Evaluating the impact of an anti-microbial silver-impregnated surgical dressing on wound infections and healing: A randomised clinical trial. Wound Repair Regen 2024; 32:67-73. [PMID: 38111101 DOI: 10.1111/wrr.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/09/2023] [Accepted: 11/19/2023] [Indexed: 12/20/2023]
Abstract
StopBac is an innovative silver-impregnated antimicrobial dressing specifically designed to reduce surgical site infections and enhance healing. The primary objective of this study was to compare infection healing rate at 30 days after surgery between primarily closed surgical wounds covered with StopBac and those covered with Cosmorpor, a standard surgical dressing. Between 1.3.2023 and 30.4.2023, we conducted a prospective screening of all patients undergoing surgical operations within a single surgical department. Patients were randomised into either the Cosmopor group or the StopBac group. Outcome measures were superficial and deep surgical site infections and healed wounds. Data concerning patient and surgical factors were prospectively collected and analysed. The analysis comprised 275 patients, divided into two groups: 140 patients in the StopBac group and 135 in the Cosmopor group. The StopBac dressing was associated with a reduced rate of infection, with an odds ratio of 0.288 (p < 0.001), and an increased likelihood of wound healing at 30 days after surgery. The odds ratio for healing at 30 days was 4.661 (p < 0.001). StopBac was associated with a lower incidence of surgical wound infections and a higher probability of healing at 30 days after surgery, when compared with standard dressing.
Collapse
Affiliation(s)
- Adam Whitley
- Department of Surgery, University Hospital Královské Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Peter Baláž
- Department of Surgery, University Hospital Královské Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Vascular Surgery, Cardiocenter, University Hospital Královské Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kavalírek
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jitka Hanusová
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Robert Gürlich
- Department of Surgery, University Hospital Královské Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Ramos C, Lorenz K, Putrinš M, Hind CK, Meos A, Laidmäe I, Tenson T, Sutton JM, Mason AJ, Kogermann K. Fibrous matrices facilitate pleurocidin killing of wound associated bacterial pathogens. Eur J Pharm Sci 2024; 192:106648. [PMID: 37992909 DOI: 10.1016/j.ejps.2023.106648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/20/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Conventional wound infection treatments neither actively promote wound healing nor address the growing problem of antibacterial resistance. Antimicrobial peptides (AMPs) are natural defense molecules, released from host cells, which may be rapidly bactericidal, modulate host-immune responses, and/or act as endogenous mediators for wound healing. However, their routine clinical use has hitherto been hindered due to their instability in the wound environment. Here we describe an electrospun carrier system for topical application of pleurocidin, demonstrating sufficient AMP release from matrices to kill wound-associated pathogens including Acinetobacter baumannii and Pseudomonas aeruginosa. Pleurocidin can be incorporated into polyvinyl alcohol (PVA) fiber matrices, using coaxial electrospinning, without major drug loss with a peptide content of 0.7% w/w predicted sufficient to kill most wound associated species. Pleurocidin retains its activity on release from the electrospun fiber matrix and completely inhibits growth of two strains of A. baumannii (AYE; ATCC 17978) and other ESKAPE pathogens. Inhibition of P. aeruginosa strains (PAO1; NCTC 13437) is, however, matrix weight per volume dependent, with only larger/thicker matrices maintaining complete inhibition. The resulting estimation of pleurocidin release from the matrix reveals high efficiency, facilitating a greater AMP potency. Wound matrices are often applied in parallel or sequentially with the use of standard wound care with biocides, therefore the presence and effect of biocides on pleurocidin potency was tested. It was revealed that combinations displayed additive or modestly synergistic effects depending on the biocide and pathogens which should be considered during the therapy. Taken together, we show that electrospun, pleurocidin-loaded wound matrices have potential to be investigated for wound infection treatment.
Collapse
Affiliation(s)
- Celia Ramos
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 0JG, United Kingdom; Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King´s College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Kairi Lorenz
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Marta Putrinš
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Charlotte K Hind
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Andres Meos
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Ivo Laidmäe
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - J Mark Sutton
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 0JG, United Kingdom; Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King´s College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, United Kingdom
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King´s College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Karin Kogermann
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| |
Collapse
|
9
|
Ivankovic T, Turk H, Hrenovic J, Schauperl Z, Ivankovic M, Ressler A. Antibacterial activity of silver doped hydroxyapatite toward multidrug-resistant clinical isolates of Acinetobacter baumannii. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131867. [PMID: 37331061 DOI: 10.1016/j.jhazmat.2023.131867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Bacteria Acinetobacter baumannii is a persistent issue in hospital-acquired infections due to its fast and potent development of multi-drug resistance. To address this urgent challenge, a novel biomaterial using silver (Ag+) ions within the hydroxyapatite (HAp) lattice has been developed to prevent infections in orthopedic surgery and bone regeneration applications without relying on antibiotics. The aim of the study was to examine the antibacterial activity of mono-substituted HAp with Ag+ ions and a mixture of mono-substituted HAps with Sr2+, Zn2+, Mg2+, SeO32- and Ag+ ions against the A. baumannii. The samples were prepared in the form of powder and disc and analyzed by disc diffusion, broth microdilution method, and scanning electron microscopy. The results from the disc-diffusion method have shown a strong antibacterial efficacy of the Ag-substituted and mixture of mono-substituted HAps (Sr, Zn, Se, Mg, Ag) toward several clinical isolates. The Minimal Inhibitory Concentrations for the powdered HAp samples ranged from 32 to 42 mg/L (Ag+ substituted) and 83-167 mg/L (mixture of mono-substituted), while the Minimal Bactericidal Concentrations after 24 h of contact ranged from 62.5 (Ag+) to 187.5-292 mg/L (ion mixture). The lower substitution level of Ag+ ions in a mixture of mono-substituted HAps was the cause of lower antibacterial effects measured in suspension. However, the inhibition zones and bacterial adhesion on the biomaterial surface were comparable. Overall, the clinical isolates of A. baumannii were effectively inhibited by substituted HAp samples, probably in the same amount as by other commercially available silver-doped materials, and such materials may provide a promising alternative or supplementation to antibiotic treatment in the prevention of infections associated with bone regeneration. The antibacterial activity of prepared samples toward A. baumannii was time-dependent and should be considered in potential applications.
Collapse
Affiliation(s)
- Tomislav Ivankovic
- Faculty of Science, Department of Biology, University of Zagreb, 10000 Zagreb, Croatia.
| | - Helena Turk
- Faculty of Science, Department of Biology, University of Zagreb, 10000 Zagreb, Croatia.
| | - Jasna Hrenovic
- Faculty of Science, Department of Biology, University of Zagreb, 10000 Zagreb, Croatia.
| | - Zdravko Schauperl
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia.
| | - Marica Ivankovic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia.
| | - Antonia Ressler
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, 33014 Tampere, Finland.
| |
Collapse
|
10
|
Pinto EP, Menezes RP, de S Tavares W, Ferreira AM, Sousa FFOD, Araújo da Silva G, Zamora RRM, Araújo RS, de Souza TM. Copaiba essential oil loaded-nanocapsules film as a potential candidate for treating skin disorders: preparation, characterization, and antibacterial properties. Int J Pharm 2023; 633:122608. [PMID: 36642350 DOI: 10.1016/j.ijpharm.2023.122608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Infections have emerged as a novel target in managing skin and mucosa diseases. Bacterial resistance to antimicrobials and biofilm elimination from surfaces remains a challenge. Because polymeric nanocapsules (NC) can increase antimicrobial activity, this study aimed to produce and characterize NC into chitosan films (CSF). Copaiba essential oil (CO) presents antimicrobial activity and was chosen to load NC. In addition, the antibacterial activity was evaluated to obtain a new biodegradable polymeric platform system with the potential to treat topical diseases associated with bacterial infections. The CO-NC produced by nanoprecipitation presented particle size lower than 250 nm, negative charge, and encapsulation efficiency higher than 70 %. Direct incorporation of CO into CSF (CO-CSF) by casting method worsened the film's characteristics. However, incorporating CO-NC into CSF (CO-NC-CSF) avoided these drawbacks demonstrating improved physical, mechanical, morphological, and topographical properties. FTIR results demonstrated possible intermolecular interactions among the polymers and CO. The CO-NC-CSF and CO-CSF presented antibacterial properties against Staphylococcus aureus, and Pseudomonas aeruginosa, especially the formulation containing 1 % of CO. These results indicated that CO-NC-CSF is a promising candidate for treating skin disorders.
Collapse
Affiliation(s)
| | - Rodrigo P Menezes
- Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22541-041, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Haidari H, Melguizo-Rodríguez L, Cowin AJ, Kopecki Z. Therapeutic potential of antimicrobial peptides for treatment of wound infection. Am J Physiol Cell Physiol 2023; 324:C29-C38. [PMID: 36409176 DOI: 10.1152/ajpcell.00080.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Healing of cutaneous wounds is a fundamental process required to re-establish tissue integrity, repair skin barrier function, and restore skin homeostasis. Chronic wound infection, exacerbated by the growing development of resistance to conventional therapies, hinders the skin repair process and is a serious clinical problem affecting millions of people worldwide. In the past decade, the use of antimicrobial peptides (AMPs) has attracted increasing attention as a potential novel strategy for the treatment of chronic wound infections due to their unique multifaceted mechanisms of action, and AMPs have been demonstrated to function as potent host-defense molecules that can control microbial proliferation, modulate host-immune responses, and act as endogenous mediators of wound healing. To date over 3,200 AMPs have been discovered either from living organisms or through synthetic derivation, some of which have progressed to clinical trials for the treatment of burn and wound injuries. However, progress to routine clinical use has been hindered due to AMPs' susceptibility to wound and environmental factors including changes in pH, proteolysis, hydrolysis, oxidation, and photolysis. This review will discuss the latest research focused on the development and applications of AMPs for wound infections using the latest nanotechnological approaches to improve AMP delivery, and stability to present effective combinatorial treatment for clinical applications.
Collapse
Affiliation(s)
- Hanif Haidari
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Allison J Cowin
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
12
|
Tran P, Kopel J, Luth K, Dong H, Dev A, Mehta D, Mitchell K, Moeller KW, Moeller CD, Reid T. The in vitro efficacy of betadine antiseptic solution and colloidal silver gel combination in inhibiting the growth of bacterial biofilms. Am J Infect Control 2023; 51:23-28. [PMID: 35439543 DOI: 10.1016/j.ajic.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Betadine (Povidone-Iodine) solution is a topically applied antiseptic, which has been used routinely used in wound care and general surgery to prevent skin and wound infections. However, several studies have documented the ineffectiveness of betadine. Other topical antimicrobial dressings, including those that contain silver, have been used in the management of infected wounds. The present study was undertaken to determine if the combination of 5% betadine solution and silver colloidal gel (Ag-gel) is more effective than either substance alone in inhibiting the growth gram-negative and gram-positive bacteria. METHODS The effectiveness of 5% betadine solution and Ag-gel as anti-microbial agents were assessed using both colony forming unit (CFU) assay and confocal laser scanning microscopy (CLSM). RESULTS Ag-gel showed complete inhibition on all the bacteria species examined except the Klebsiella pneumoniae clinical isolate (CL) strain while 5% betadine concentrations did not completely kill any of the tested bacteria. In contrast, K. pneumoniae was completely eliminated in the presence of both 5% betadine solution and Ag-gel together. The CLSM showed similar findings to the CFU results examining the 5% betadine solution and Ag-gel combination. CONCLUSIONS This study demonstrated that while the individual treatments using either 5% betadine solution and Ag-gel alone were infective antimicrobial agents, the combination of 5% betadine solution and Ag-gel was superior at eliminating all tested bacteria, including K. pneumoniae CL.
Collapse
Affiliation(s)
- Phat Tran
- Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jonathan Kopel
- Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Keaton Luth
- Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Huy Dong
- Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ameesh Dev
- Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Kelly Mitchell
- Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | | | - Ted Reid
- Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
13
|
May A, Kopecki Z, Carney B, Cowin A. Practical extended use of antimicrobial silver (PExUS). ANZ J Surg 2022; 92:1199-1205. [PMID: 35302703 DOI: 10.1111/ans.17598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Antimicrobial silver has had a role in wound antisepsis throughout history and, with the rise in acquired antibiotic resistance, silver dressings are once again commonly used. Issues with silver dressings include the important environmental consideration of nanoparticle manufacture, and the significant financial cost of these products. One solution to these problems may be to adopt an opened-but-unused model of wound care whereby dressing materials are used in piecemeal fashion and excess stored in between dressing changes. Due to a lack of literature on the topic, this project was designed with the aim of testing the antimicrobial efficacy of available silver dressings during storage after opening. METHODS Four commonly used silver dressings were tested for antimicrobial activity using a zone of inhibition assay against clinically important pathogens. The assay was performed on opening of dressings and repeated over 3 months in storage at 4, 25 or 37°C. Analysis was performed using repeated measures ANOVA. Swab cultures were taken at each simulated dressing change to detect microbial contamination of the dressings during storage. RESULTS There was no effect of time or storage temperature on the zone of inhibition over the 12 week test period. No swabs taken returned culture consistent with microbial contamination of stored dressings. CONCLUSION Opened silver dressings maintain antimicrobial activity for at least 12 weeks in storage and are resistant to contamination. An opened-but-unused model for wound care is likely to improve cost-effectiveness while preserving effectiveness and safety.
Collapse
Affiliation(s)
- Andrew May
- Burns Surgery, The Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Bernard Carney
- Burns Surgery, The Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Allison Cowin
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|