1
|
Krishnaswamy RJ, Robson D, Gunawan A, Ramanayake A, Barua S, Jain P, Adji A, Macdonald PS, Hayward CS, Muthiah K. Using pulsatility responses to breath-hold maneuvers to predict readmission rates in continuous-flow left ventricular assist device patients. Artif Organs 2024; 48:70-82. [PMID: 37819003 DOI: 10.1111/aor.14644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/18/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Dynamic respiratory maneuvers induce heterogenous changes to flow-pulsatility in continuous-flow left ventricular assist device patients. We evaluated the association of these pulsatility responses with patient hemodynamics and outcomes. METHODS Responses obtained from HVAD (Medtronic) outpatients during successive weekly clinics were categorized into three ordinal groups according to the percentage reduction in flow-waveform pulsatility (peak-trough flow) upon inspiratory-breath-hold, (%∆P): (1) minimal change (%∆P ≤ 50), (2) reduced pulsatility (%∆P > 50 but <100), (3) flatline (%∆P = 100). Same-day echocardiography and right-heart-catheterization were performed. Readmissions were compared between patients with ≥1 flatline response (F-group) and those without (NF-group). RESULTS Overall, 712 responses were obtained from 55 patients (82% male, age 56.4 ± 11.5). When compared to minimal change, reduced pulsatility and flatline responses were associated with lower central venous pressure (14.2 vs. 11.4 vs. 9.0 mm Hg, p = 0.08) and pulmonary capillary wedge pressure (19.8 vs. 14.3 vs. 13.0 mm Hg, p = 0.03), lower rates of ≥moderate mitral regurgitation (48% vs. 13% vs. 10%, p = 0.01), lower rates of ≥moderate right ventricular impairment (62% vs. 25% vs. 27%, p = 0.03), and increased rates of aortic valve opening (32% vs. 50% vs. 75%, p = 0.03). The F-group (n = 28) experienced numerically lower all-cause readmissions (1.51 vs. 2.79 events-per-patient-year [EPPY], hazard-ratio [HR] = 0.67, p = 0.12), reduced heart failure readmissions (0.07 vs. 0.57 EPPY, HR = 0.15, p = 0.008), and superior readmission-free survival (HR = 0.47, log-rank p = 0.04). Syncopal readmissions occurred exclusively in the F-group (0.20 vs. 0 EPPY, p = 0.01). CONCLUSION Responses to inspiratory-breath-hold predicted hemodynamics and readmission risk. The impact of inspiratory-breath-hold on pulsatility can non-invasively guide hemodynamic management decisions, patient optimization, and readmission risk stratification.
Collapse
Affiliation(s)
- Rohan Joshua Krishnaswamy
- Heart and Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Desiree Robson
- Heart and Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Aaron Gunawan
- Heart and Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Anju Ramanayake
- Heart and Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Sumita Barua
- Heart and Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Pankaj Jain
- Heart and Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Audrey Adji
- Heart and Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Peter Simon Macdonald
- Heart and Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Christopher Simon Hayward
- Heart and Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Kavitha Muthiah
- Heart and Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| |
Collapse
|
2
|
Rocchi M, Gross C, Moscato F, Schlöglhofer T, Meyns B, Fresiello L. An in vitro model to study suction events by a ventricular assist device: validation with clinical data. Front Physiol 2023; 14:1155032. [PMID: 37560156 PMCID: PMC10407082 DOI: 10.3389/fphys.2023.1155032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Introduction: Ventricular assist devices (LVADs) are a valuable therapy for end-stage heart failure patients. However, some adverse events still persist, such as suction that can trigger thrombus formation and cardiac rhythm disorders. The aim of this study is to validate a suction module (SM) as a test bench for LVAD suction detection and speed control algorithms. Methods: The SM consists of a latex tube, mimicking the ventricular apex, connected to a LVAD. The SM was implemented into a hybrid in vitro-in silico cardiovascular simulator. Suction was induced simulating hypovolemia in a profile of a dilated cardiomyopathy and of a restrictive cardiomyopathy for pump speeds ranging between 2,500 and 3,200 rpm. Clinical data collected in 38 LVAD patients were used for the validation. Clinical and simulated LVAD flow waveforms were visually compared. For a more quantitative validation, a binary classifier was used to classify simulated suction and non-suction beats. The obtained classification was then compared to that generated by the simulator to evaluate the specificity and sensitivity of the simulator. Finally, a statistical analysis was run on specific suction features (e.g., minimum impeller speed pulsatility, minimum slope of the estimated flow, and timing of the maximum slope of the estimated flow). Results: The simulator could reproduce most of the pump waveforms observed in vivo. The simulator showed a sensitivity and specificity and of 90.0% and 97.5%, respectively. Simulated suction features were in the interquartile range of clinical ones. Conclusions: The SM can be used to investigate suction in different pathophysiological conditions and to support the development of LVAD physiological controllers.
Collapse
Affiliation(s)
- Maria Rocchi
- Unit of Cardiac Surgery, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Christoph Gross
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Thomas Schlöglhofer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Bart Meyns
- Unit of Cardiac Surgery, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Libera Fresiello
- Unit of Cardiac Surgery, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
- Cardiovascular and Respiratory Physiology, University of Twente, Enschede, Netherlands
| |
Collapse
|
3
|
Rocchi M, Fresiello L, Jacobs S, Dauwe D, Droogne W, Meyns B. Potential of Medical Management to Mitigate Suction Events in Ventricular Assist Device Patients. ASAIO J 2022; 68:814-821. [PMID: 34524148 DOI: 10.1097/mat.0000000000001573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Ventricular suction is a common adverse event in ventricular assist device (VAD) patients and can be due to multiple underlying causes. The aim of this study is to analyze the potential of different therapeutic interventions to mitigate suction events induced by different pathophysiological conditions. To do so, a suction module was embedded in a cardiovascular hybrid (hydraulic-computational) simulator reproducing the entire cardiovascular system. An HVAD system (Medtronic) was connected between a compliant ventricular apex and a simulated aorta. Starting from a patient profile with severe dilated cardiomyopathy, four different pathophysiological conditions leading to suction were simulated: hypovolemia (blood volume: -900 ml), right ventricular failure (contractility -70%), hypotension (systemic vascular resistance: 8.3 Wood Units), and tachycardia (heart rate:185 bpm). Different therapeutic interventions such as volume infusion, ventricular contractility increase, vasoconstriction, heart rate increase, and pump speed reduction were simulated. Their effects were compared in terms of general hemodynamics and suction mitigation. Each intervention elicited a different effect on the hemodynamics for every pathophysiological condition. Pump speed reduction mitigated suction but did not ameliorate the hemodynamics. Administering volume and inducing a systemic vasoconstriction were the most efficient interventions in both improving the hemodynamics and mitigating suction. When simulating volume infusion, the cardiac powers increased, respectively, by 38%, 25%, 42%, and 43% in the case of hypovolemia, right ventricular failure, hypotension, and tachycardia. Finally, a management algorithm is proposed to identify a therapeutic intervention suited for the underlying physiologic condition causing suction.
Collapse
Affiliation(s)
- Maria Rocchi
- From the Department of Cardiovascular Sciences, Cardiac Surgery, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Libera Fresiello
- From the Department of Cardiovascular Sciences, Cardiac Surgery, Katholieke Universiteit Leuven, Leuven, Belgium
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Steven Jacobs
- From the Department of Cardiovascular Sciences, Cardiac Surgery, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Dieter Dauwe
- From the Department of Cardiovascular Sciences, Cardiac Surgery, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Walter Droogne
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Bart Meyns
- From the Department of Cardiovascular Sciences, Cardiac Surgery, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Villa C, Zafar F, Lorts A, Kung E. Hemodynamic Response to Device Titration in the Shunted Single Ventricle Circulation: A Patient Cohort Modeling Study. ASAIO J 2022; 68:268-274. [PMID: 33788799 DOI: 10.1097/mat.0000000000001433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Clinical outcomes of ventricular assist device (VAD) support for shunted single ventricle patients trail the larger population due in part to the challenges in optimizing VAD support and balancing systemic and pulmonary circulations. We sought to understand the response to VAD titration in the shunted circulation using a lumped-parameter network modeling six patient-specific clinical cases. Hemodynamic data from six patients (mean body surface area = 0.30 m2) with a systemic-to-pulmonary shunt was used to construct simulated cases of heart failure and hemodynamic response to increasing VAD flow from 5 to 10 L/min/m2. With increasing VAD flow, the pulmonary arterial pressure stayed relatively constant in five patient cases and increased in one patient case. The mean VAD flow needed to attain an arterial-venous O2 saturation difference of 30% was 6.5 ± 1.2 L/min/m2, which is higher than that in the equivalent nonshunted scenario due to the partial diversion of flow to the pulmonary circulation. The hemodynamic responses to VAD support can vary significantly between specific patient cases; therefore hemodynamic modeling may help guide an individualized approach to perioperative VAD management in the shunted single-ventricle circulation and to understand the patients who may benefit the most from VAD support.
Collapse
Affiliation(s)
- Chet Villa
- From the Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Farhan Zafar
- Department of Surgery, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Angela Lorts
- From the Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Ethan Kung
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina
- Department of Bioengineering, Clemson University, Clemson, South Carolina
| |
Collapse
|
5
|
A Compliant Model of the Ventricular Apex to Study Suction in Ventricular Assist Devices. ASAIO J 2021; 67:1125-1133. [PMID: 34570727 DOI: 10.1097/mat.0000000000001370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ventricular suction is a frequent adverse event in patients with a ventricular assist device (VAD). This study presents a suction module (SM) embedded in a hybrid (hydraulic-computational) cardiovascular simulator suitable for the testing of VADs and related suction events. The SM consists of a compliant latex tube reproducing a simplified ventricular apex. The SM is connected on one side to a hydraulic chamber of the simulator reproducing the left ventricle, and on the other side to a HeartWare HVAD system. The SM is immersed in a hydraulic chamber with a controllable pressure to occlude the compliant tube and activate suction. Two patient profiles were simulated (dilated cardiomyopathy and heart failure with preserved ejection fraction), and the circulating blood volume was reduced stepwise to obtain different preload levels. For each simulated step, the following data were collected: HVAD flow, ventricular pressure and volume, and pressure at the inflow cannula. Data collected for the two profiles and for decreasing preload levels evidenced suction profiles differing in terms of frequency (intermittent vs. every heart beat), amplitude (partial or complete stoppage of the HVAD flow), and shape. Indeed different HVAD flow patterns were observed for the two patient profiles because of the different mechanical properties of the simulated ventricles. Overall, the HVAD flow patterns showed typical indicators of suctions observed in clinics. Results confirmed that the SM can reproduce suction phenomena with VAD under different pathophysiological conditions. As such, the SM can be used in the future to test VADs and control algorithms aimed at preventing suction phenomena.
Collapse
|
6
|
Stephens AF, Gregory SD, Burrell AJC, Marasco S, Stub D, Salamonsen RF. Physiological principles of Starling-like control of rotary ventricular assist devices. Expert Rev Med Devices 2020; 17:1169-1182. [PMID: 33094673 DOI: 10.1080/17434440.2020.1841631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction: This review explores the Starling-like physiological control method (SLC) for rotary ventricular assist devices (VADs) for severe heart failure. The SLC, based on mathematical models of the circulation, has two functions modeling each ventricle. The first function controls the output of the VAD to the arterial pool according to Starling's law, while the second function accounts for how the blood returns to the heart from the veins. The article aims to expose clinicians to SLC in an accessible and clinically relevant discussion. Areas Covered: The article explores the physiology underlying the controller, its development and how that physiology can be adapted to SLC. Examples of controller performance are demonstrated and discussed using a benchtop model of the cardiovascular system. A discussion of the limitations and criticisms of SLC is presented, followed by a future outlook on the clinical adoption of SLC. Expert Opinion: Due to its simplicity and emulation of the natural cardiac autoregulation, SLC is the superior physiological control method for rotary VADs. However, current technical and regulatory challenges prevent the clinical translation of SLC of VADs. Further technical and regulatory development will enable the clinical translation of SLCs of VADs in the coming years.
Collapse
Affiliation(s)
- Andrew F Stephens
- Department of Mechanical and Aerospace Engineering, Monash University , Melbourne, Australia.,Cardiorespiratory Engineering and Technology Laboratory, Baker Heart and Diabetes Institute , Melbourne, Australia
| | - Shaun D Gregory
- Department of Mechanical and Aerospace Engineering, Monash University , Melbourne, Australia.,Cardiorespiratory Engineering and Technology Laboratory, Baker Heart and Diabetes Institute , Melbourne, Australia
| | | | - Silvana Marasco
- Department of Cardiothoracic Surgery, Alfred Hospital , Melbourne, Australia
| | - Dion Stub
- Cardiorespiratory Engineering and Technology Laboratory, Baker Heart and Diabetes Institute , Melbourne, Australia.,Department of Cardiology, Alfred Hospital , Melbourne, Australia.,Department of Epidemiology and Preventive Medicine, Monash University , Melbourne, Australia
| | - Robert F Salamonsen
- Intensive Care Unit, Alfred Hospital , Melbourne, Australia.,Department of Epidemiology and Preventive Medicine, Monash University , Melbourne, Australia
| |
Collapse
|
7
|
Gross C, Schima H, Schlöglhofer T, Dimitrov K, Maw M, Riebandt J, Wiedemann D, Zimpfer D, Moscato F. Continuous LVAD monitoring reveals high suction rates in clinically stable outpatients. Artif Organs 2020; 44:E251-E262. [PMID: 31945201 PMCID: PMC7318142 DOI: 10.1111/aor.13638] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
Suction of the left ventricle can lead to potentially life‐threatening events in left ventricular assist device (LVAD) patients. With the resolution of currently available clinical LVAD monitoring healthcare professionals are unable to evaluate patients’ suction occurrences in detail. This study investigates occurrences and durations of suction events and their associations with tachycardia in stable outpatients. Continuous high‐resolution LVAD data from HVAD patients were analyzed in the early outpatient period for 15 days. A validated suction detection from LVAD signals was used. Suction events were evaluated as suction rates, bursts of consecutive suction beats, and clusters of suction beats. The occurrence of tachycardia was analyzed before, during, and after suction clusters. Furthermore, blood work, implant strategy, LVAD speed setting, inflow cannula position, left ventricular diameters, and adverse events were evaluated in these patients. LVAD data of 10 patients was analyzed starting at 78 ± 22 postoperative days. Individuals’ highest suction rates per hour resulted in a median of 11% (range 3%‐61%). Bursts categorized as consecutive suction beats with n = 2, n = 3‐5, n = 6‐15, and n > 15 beats were homogenously distributed with 10.3 ± 0.8% among all suction beats. Larger suction bursts were followed by shorter suction‐free periods. Tachycardia during suction occurred in 12% of all suction clusters. Significant differences in clinical parameters between individuals with high and low suction rates were only observed in left ventricular end‐diastolic and end‐systolic diameters (P < .02). Continuous high‐resolution LVAD monitoring sheds light on outpatient suction occurrences. Interindividual and intraindividual characteristics of longitudinal suction rates were observed. Longer suction clusters have higher probabilities of tachycardia within the cluster and more severe types of suction waveforms. This work shows the necessity of improved LVAD monitoring and the implementation of an LVAD speed control to reduce suction rates and their concomitant burden on the cardiovascular system.
Collapse
Affiliation(s)
- Christoph Gross
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Cardiovascular Research, Vienna, Austria
| | - Heinrich Schima
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Cardiovascular Research, Vienna, Austria.,Division of Cardiac Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Schlöglhofer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Cardiovascular Research, Vienna, Austria.,Division of Cardiac Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Kamen Dimitrov
- Division of Cardiac Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Martin Maw
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Cardiovascular Research, Vienna, Austria.,Division of Cardiac Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia Riebandt
- Division of Cardiac Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Dominik Wiedemann
- Division of Cardiac Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Daniel Zimpfer
- Division of Cardiac Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Cardiovascular Research, Vienna, Austria
| |
Collapse
|
8
|
Wu EL, Stevens MC, Nestler F, Pauls JP, Bradley AP, Tansley G, Fraser JF, Gregory SD. A Starling-like total work controller for rotary blood pumps: An in vitro evaluation. Artif Organs 2019; 44:E40-E53. [PMID: 31520408 DOI: 10.1111/aor.13570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/24/2019] [Accepted: 09/03/2019] [Indexed: 11/26/2022]
Abstract
Due to improved durability and survival rates, rotary blood pumps (RBPs) are the preferred left ventricular assist device when compared to volume displacement pumps. However, when operated at constant speed, RBPs lack a volume balancing mechanism which may result in left ventricular suction and suboptimal ventricular unloading. Starling-like controllers have previously been developed to balance circulatory volumes; however, they do not consider ventricular workload as a feedback and may have limited sensitivity to adjust RBP workload when ventricular function deteriorates or improves. To address this, we aimed to develop a Starling-like total work controller (SL-TWC) that matched the energy output of a healthy heart by adjusting RBP hydraulic work based on measured left ventricular stroke work and ventricular preload. In a mock circulatory loop, the SL-TWC was evaluated using a HeartWare HVAD in a range of simulated patient conditions. These conditions included changes in systemic hypertension and hypotension, pulmonary hypertension, blood circulatory volume, exercise, and improvement and deterioration of ventricular function by increasing and decreasing ventricular contractility. The SL-TWC was compared to constant speed control where RBP speed was set to restore cardiac output to 5.0 L/min at rest. Left ventricular suction occurred with constant speed control during pulmonary hypertension but was prevented with the SL-TWC. During simulated exercise, the SL-TWC demonstrated reduced LVSW (0.51 J) and greater RBP flow (9.2 L/min) compared to constant speed control (LVSW: 0.74 J and RBP flow: 6.4 L/min). In instances of increased ventricular contractility, the SL-TWC reduced RBP hydraulic work while maintaining cardiac output similar to the rest condition. In comparison, constant speed overworked and increased cardiac output. The SL-TWC balanced circulatory volumes by mimicking the Starling mechanism, while also considering changes in ventricular workload. Compared to constant speed control, the SL-TWC may reduce complications associated with volume imbalances, adapt to changes in ventricular function and improve patient quality of life.
Collapse
Affiliation(s)
- Eric L Wu
- Innovative Cardiovascular Engineering Technology Laboratory (ICETLAB), Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia.,School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael C Stevens
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Central Clinical School, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Frank Nestler
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia.,BiVACOR Pty Ltd, Brisbane, Queensland, Australia
| | - Jo P Pauls
- Innovative Cardiovascular Engineering Technology Laboratory (ICETLAB), Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia.,School of Engineering and Built Environment, Griffith University, Gold Coast, Queensland, Australia
| | - Andrew P Bradley
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Geoff Tansley
- Innovative Cardiovascular Engineering Technology Laboratory (ICETLAB), Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia.,School of Engineering and Built Environment, Griffith University, Gold Coast, Queensland, Australia
| | - John F Fraser
- Innovative Cardiovascular Engineering Technology Laboratory (ICETLAB), Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia.,School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Shaun D Gregory
- Innovative Cardiovascular Engineering Technology Laboratory (ICETLAB), Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia.,School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,School of Engineering and Built Environment, Griffith University, Gold Coast, Queensland, Australia.,Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Hohmann S, Veltmann C, Duncker D, König T, Berliner D, Hanke J, Dogan G, Chatterjee A, Feldmann C, Lynch B, Burkhoff D, Haverich A, Bauersachs J, Schmitto JD. Initial experience with telemonitoring in left ventricular assist device patients. J Thorac Dis 2019; 11:S853-S863. [PMID: 31183165 DOI: 10.21037/jtd.2018.10.37] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Left ventricular assist devices (LVAD) are increasingly used in patients with end stage heart failure. The HeartAssist 5 and aVAD LVADs offer telemetric monitoring capabilities. Here we report our initial single centre experience with the largest telemonitoring cohort of LVAD patients. Methods Eleven patients (9 males) received a telemonitoring-capable LVAD and were included in our telemonitoring cohort. Waveforms and alarm data were obtained from the telemonitoring system and hospital records were reviewed for clinical data. Results Mean age at LVAD implantation was 59±5.1 years (mean ± standard deviation). Seven patients had non-ischemic cardiomyopathy and 4 patients had ischemic cardiomyopathy. Median LVEF at implant was 16% (IQR, 15-20%). The total follow-up time was 2,438 patient-days. A total of 6,216 alarm messages were generated in 11 patients. Most common were low flow alarms due to hypovolemia, followed by low flow alarms because of suspected pump thrombosis. One patient died during follow-up, one received a cardiac transplant and one had the LVAD explanted because of pump thrombosis. Pump thrombosis was suspected in 5 patients with 8 episodes of sudden flow decreases and laboratory signs of haemolysis. Conclusions Real-time telemonitoring of LVAD pump flow, motor speed and power consumption is a promising tool in the follow-up of LVAD recipients. Trending pump flow over hours or days can assist in the early detection of complications, especially flow reductions due to hypovolemia and LVAD thrombosis. Further studies are warranted to delineate the impact of remote monitoring on patients' prognosis.
Collapse
Affiliation(s)
- Stephan Hohmann
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Christian Veltmann
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - David Duncker
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Thorben König
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Dominik Berliner
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Jasmin Hanke
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Günes Dogan
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Anamika Chatterjee
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Christina Feldmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | | | - Daniel Burkhoff
- Presbyterian Hospital, Columbia University, New York City, NY, USA
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Jan D Schmitto
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Ahmad Bakir A, Al Abed A, Stevens MC, Lovell NH, Dokos S. A Multiphysics Biventricular Cardiac Model: Simulations With a Left-Ventricular Assist Device. Front Physiol 2018; 9:1259. [PMID: 30271353 PMCID: PMC6142745 DOI: 10.3389/fphys.2018.01259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022] Open
Abstract
Computational models have become essential in predicting medical device efficacy prior to clinical studies. To investigate the performance of a left-ventricular assist device (LVAD), a fully-coupled cardiac fluid-electromechanics finite element model was developed, incorporating electrical activation, passive and active myocardial mechanics, as well as blood hemodynamics solved simultaneously in an idealized biventricular geometry. Electrical activation was initiated using a simplified Purkinje network with one-way coupling to the surrounding myocardium. Phenomenological action potential and excitation-contraction equations were adapted to trigger myocardial contraction. Action potential propagation was formulated within a material frame to emulate gap junction-controlled propagation, such that the activation sequence was independent of myocardial deformation. Passive cardiac mechanics were governed by a transverse isotropic hyperelastic constitutive formulation. Blood velocity and pressure were determined by the incompressible Navier-Stokes formulations with a closed-loop Windkessel circuit governing the circulatory load. To investigate heart-LVAD interaction, we reduced the left ventricular (LV) contraction stress to mimic a failing heart, and inserted a LVAD cannula at the LV apex with continuous flow governing the outflow rate. A proportional controller was implemented to determine the pump motor voltage whilst maintaining pump motor speed. Following LVAD insertion, the model revealed a change in the LV pressure-volume loop shape from rectangular to triangular. At higher pump speeds, aortic ejection ceased and the LV decompressed to smaller end diastolic volumes. After multiple cycles, the LV cavity gradually collapsed along with a drop in pump motor current. The model was therefore able to predict ventricular collapse, indicating its utility for future development of control algorithms and pre-clinical testing of LVADs to avoid LV collapse in recipients.
Collapse
Affiliation(s)
- Azam Ahmad Bakir
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia
| | - Amr Al Abed
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia
| | - Michael C Stevens
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia.,Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
11
|
In Vivo Evaluation of Physiologic Control Algorithms for Left Ventricular Assist Devices Based on Left Ventricular Volume or Pressure. ASAIO J 2017; 63:568-577. [DOI: 10.1097/mat.0000000000000533] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Stephens AF, Stevens MC, Gregory SD, Kleinheyer M, Salamonsen RF. In Vitro Evaluation of an Immediate Response Starling-Like Controller for Dual Rotary Blood Pumps. Artif Organs 2017; 41:911-922. [PMID: 28741664 DOI: 10.1111/aor.12962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/26/2017] [Accepted: 04/12/2017] [Indexed: 11/30/2022]
Abstract
Rotary ventricular assist devices (VADs) are used to provide mechanical circulatory support. However, their lack of preload sensitivity in constant speed control mode (CSC) may result in ventricular suction or venous congestion. This is particularly true of biventricular support, where the native flow-balancing Starling response of both ventricles is diminished. It is possible to model the Starling response of the ventricles using cardiac output and venous return curves. With this model, we can create a Starling-like physiological controller (SLC) for VADs which can automatically balance cardiac output in the presence of perturbations to the circulation. The comparison between CSC and SLC of dual HeartWare HVADs using a mock circulation loop to simulate biventricular heart failure has been reported. Four changes in cardiovascular state were simulated to test the controller, including a 700 mL reduction in circulating fluid volume, a total loss of left and right ventricular contractility, reduction in systemic vascular resistance ( SVR) from 1300 to 600 dyne s/cm5, and an elevation in pulmonary vascular resistance ( PVR) from 100 to 300 dyne s/cm5. SLC maintained the left and right ventricular volumes between 69-214 mL and 29-182 mL, respectively, for all tests, preventing ventricular suction (ventricular volume = 0 mL) and venous congestion (atrial pressures > 20 mm Hg). Cardiac output was maintained at sufficient levels by the SLC, with systemic and pulmonary flow rates maintained above 3.14 L/min for all tests. With the CSC, left ventricular suction occurred during reductions in SVR, elevations in PVR, and reduction in circulating fluid simulations. These results demonstrate a need for a physiological control system and provide adequate in vitro validation of the immediate response of a SLC for biventricular support.
Collapse
Affiliation(s)
- Andrew F Stephens
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,School of Engineering, Griffith University, QLD, Australia
| | - Michael C Stevens
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia
| | - Shaun D Gregory
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,School of Engineering, Griffith University, QLD, Australia.,School of Medicine, University of Queensland, QLD, Australia
| | - Matthias Kleinheyer
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,School of Engineering, Griffith University, QLD, Australia
| | - Robert F Salamonsen
- Department of Epidemiology and Preventive Medicine, Monash University, VIC, Australia.,Intensive Care Unit, Alfred Hospital, Prahran, VIC, Australia
| |
Collapse
|
13
|
Left Ventricular Assist Devices: Challenges Toward Sustaining Long-Term Patient Care. Ann Biomed Eng 2017; 45:1836-1851. [DOI: 10.1007/s10439-017-1858-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/22/2017] [Indexed: 11/25/2022]
|
14
|
Mansouri M, Gregory SD, Salamonsen RF, Lovell NH, Stevens MC, Pauls JP, Akmeliawati R, Lim E. Preload-based Starling-like control of rotary blood pumps: An in-vitro evaluation. PLoS One 2017; 12:e0172393. [PMID: 28212401 PMCID: PMC5315328 DOI: 10.1371/journal.pone.0172393] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 01/19/2017] [Indexed: 11/18/2022] Open
Abstract
Due to a shortage of donor hearts, rotary left ventricular assist devices (LVADs) are used to provide mechanical circulatory support. To address the preload insensitivity of the constant speed controller (CSC) used in conventional LVADs, we developed a preload-based Starling-like controller (SLC). The SLC emulates the Starling law of the heart to maintain mean pump flow ( QP¯) with respect to mean left ventricular end diastolic pressure (PLVEDm) as the feedback signal. The SLC and CSC were compared using a mock circulation loop to assess their capacity to increase cardiac output during mild exercise while avoiding ventricular suction (marked by a negative PLVEDm) and maintaining circulatory stability during blood loss and severe reductions in left ventricular contractility (LVC). The root mean squared hemodynamic deviation (RMSHD) metric was used to assess the clinical acceptability of each controller based on pre-defined hemodynamic limits. We also compared the in-silico results from our previously published paper with our in-vitro outcomes. In the exercise simulation, the SLC increased QP¯ by 37%, compared to only 17% with the CSC. During blood loss, the SLC maintained a better safety margin against left ventricular suction with PLVEDm of 2.7 mmHg compared to -0.1 mmHg for CSC. A transition to reduced LVC resulted in decreased mean arterial pressure (MAP) and QP¯ with CSC, whilst the SLC maintained MAP and QP¯. The results were associated with a much lower RMSHD value with SLC (70.3%) compared to CSC (225.5%), demonstrating improved capacity of the SLC to compensate for the varying cardiac demand during profound circulatory changes. In-vitro and in-silico results demonstrated similar trends to the simulated changes in patient state however the magnitude of hemodynamic changes were different, thus justifying the progression to in-vitro evaluation.
Collapse
Affiliation(s)
- Mahdi Mansouri
- Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, the Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Shaun D. Gregory
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, the Prince Charles Hospital, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Engineering, Griffith University, Brisbane, Queensland, Australia
| | - Robert F. Salamonsen
- Department of Intensive Care, Alfred Hospital, Prahran, Victoria, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Nigel H. Lovell
- Graduate School of Biomedical Engineering, UNSW, Sydney, New South Wales, Australia
| | - Michael C. Stevens
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, the Prince Charles Hospital, Brisbane, Queensland, Australia
- Graduate School of Biomedical Engineering, UNSW, Sydney, New South Wales, Australia
- School of Medicine, University of Sydney, Camperdown, New South Wales, Australia
| | - Jo P. Pauls
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, the Prince Charles Hospital, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Engineering, Griffith University, Brisbane, Queensland, Australia
| | - Rini Akmeliawati
- Department of Mechatronics Engineering, International Islamic University Malaysia, Kuala Lumpur
| | - Einly Lim
- Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
15
|
Schmidt T, Rosenthal D, Reinhartz O, Riemer K, He F, Hsia TY, Marsden A, Kung E. Superior performance of continuous over pulsatile flow ventricular assist devices in the single ventricle circulation: A computational study. J Biomech 2017; 52:48-54. [DOI: 10.1016/j.jbiomech.2016.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/15/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022]
|
16
|
Abstract
In this Editor's Review, articles published in 2015 are organized by category and briefly summarized. We aim to provide a brief reflection of the currently available worldwide knowledge that is intended to advance and better human life while providing insight for continued application of technologies and methods of organ Replacement, Recovery, and Regeneration. As the official journal of The International Federation for Artificial Organs, The International Faculty for Artificial Organs, the International Society for Rotary Blood Pumps, the International Society for Pediatric Mechanical Cardiopulmonary Support, and the Vienna International Workshop on Functional Electrical Stimulation, Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level." Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ Replacement, Recovery, and Regeneration from all over the world. We take this time also to express our gratitude to our authors for providing their work to this journal. We offer our very special thanks to our reviewers who give so generously of their time and expertise to review, critique, and especially provide meaningful suggestions to the author's work whether eventually accepted or rejected. Without these excellent and dedicated reviewers, the quality expected from such a journal could not be possible. We also express our special thanks to our Publisher, John Wiley & Sons for their expert attention and support in the production and marketing of Artificial Organs. We look forward to reporting further advances in the coming years.
Collapse
|