1
|
Walluks K, Hoffmann B, Svensson CM, Förster G, Müller AH, Jarvis J, Perkins J, Figge MT, Arnold D. Long-term stimulation by implanted pacemaker enables non-atrophic treatment of bilateral vocal fold paresis in a human-like animal model. Sci Rep 2024; 14:10440. [PMID: 38714750 PMCID: PMC11076618 DOI: 10.1038/s41598-024-60875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/29/2024] [Indexed: 05/10/2024] Open
Abstract
A wide variety of treatments have been developed to improve respiratory function and quality of life in patients with bilateral vocal fold paresis (BVFP). One experimental method is the electrical activation of the posterior cricoarytenoid (PCA) muscle with a laryngeal pacemaker (LP) to open the vocal folds. We used an ovine (sheep) model of unilateral VFP to study the long-term effects of functional electrical stimulation on the PCA muscles. The left recurrent laryngeal nerve was cryo-damaged in all animals and an LP was implanted except for the controls. After a reinnervation phase of six months, animals were pooled into groups that received either no treatment, implantation of an LP only, or implantation of an LP and six months of stimulation with different duty cycles. Automated image analysis of fluorescently stained PCA cross-sections was performed to assess relevant muscle characteristics. We observed a fast-to-slow fibre type shift in response to nerve damage and stimulation, but no complete conversion to a slow-twitch-muscle. Fibre size, proportion of hybrid fibres, and intramuscular collagen content were not substantially altered by the stimulation. These results demonstrate that 30 Hz burst stimulation with duty cycles of 40% and 70% did not induce PCA atrophy or fibrosis. Thus, long-term stimulation with an LP is a promising approach for treating BVFP in humans without compromising muscle conditions.
Collapse
Affiliation(s)
- Kassandra Walluks
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Institute of Zoology and Evolutionary Research, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Bianca Hoffmann
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Carl-Magnus Svensson
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Gerhard Förster
- Clinic for Otorhinolaryngology/Plastic Surgery, Wald-Klinikum Gera, Gera, Germany
| | - Andreas H Müller
- Clinic for Otorhinolaryngology/Plastic Surgery, Wald-Klinikum Gera, Gera, Germany
| | - Jonathan Jarvis
- Faculty of Science, Sport and Exercise Sciences, John Moores University, Liverpool, UK
| | | | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany.
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Dirk Arnold
- Clinic and Polyclinic for Otorhinolaryngology, University Hospital Jena, Jena, Germany.
| |
Collapse
|
2
|
Kirsch A, Gerstenberger C, Jakubaß B, Tschernitz M, Perkins JD, Groselj‐Strele A, Lanmüller H, Jarvis JC, Kniesburges S, Döllinger M, Gugatschka M. Bilateral Functional Electrical Stimulation for the Treatment of Presbyphonia in a Sheep Model. Laryngoscope 2024; 134:848-854. [PMID: 37597167 PMCID: PMC10952233 DOI: 10.1002/lary.30984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVES The aim of the study was to increase muscle volume and improve phonation characteristics of the aged ovine larynx by functional electrical stimulation (FES) using a minimally invasive surgical procedure. METHODS Stimulation electrodes were placed bilaterally near the terminal adduction branch of the recurrent laryngeal nerves (RLN). The electrodes were connected to battery powered pulse generators implanted subcutaneously at the neck region. Training patterns were programmed by an external programmer using a bidirectional radio frequency link. Training sessions were repeated automatically by the implant every other day for 1 week followed by every day for 8 weeks in the awake animal. Another group of animals were used as sham, with electrodes positioned but not connected to an implant. Outcome parameters included gene expression analysis, histological assessment of muscle fiber size, functional analysis, and volumetric measurements based on three-dimensional reconstructions of the entire thyroarytenoid muscle (TAM). RESULTS Increase in minimal muscle fiber diameter and an improvement in vocal efficiency were observed following FES, compared with sham animals. CONCLUSION This is the first study to demonstrate beneficial effects in the TAM of FES at molecular, histological, and functional levels. FES of the terminal branches of the RLN reversed the effects of age-related changes and improved vocal efficiency. LEVEL OF EVIDENCE NA Laryngoscope, 134:848-854, 2024.
Collapse
Affiliation(s)
- Andrijana Kirsch
- Division of Phoniatrics, ENT University HospitalMedical University of GrazGrazAustria
| | - Claus Gerstenberger
- Division of Phoniatrics, ENT University HospitalMedical University of GrazGrazAustria
| | - Bernhard Jakubaß
- Division of Phoniatrics and Pediatric Audiology at the Department of Otorhinolaryngology, Head and Neck SurgeryUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Magdalena Tschernitz
- Division of Phoniatrics, ENT University HospitalMedical University of GrazGrazAustria
| | | | - Andrea Groselj‐Strele
- Core Facility Computational Bioanalytics, Center for Medical ResearchMedical University of GrazGrazAustria
| | - Hermann Lanmüller
- Center of Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Jonathan C. Jarvis
- School of Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Stefan Kniesburges
- Division of Phoniatrics and Pediatric Audiology at the Department of Otorhinolaryngology, Head and Neck SurgeryUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Michael Döllinger
- Division of Phoniatrics and Pediatric Audiology at the Department of Otorhinolaryngology, Head and Neck SurgeryUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Markus Gugatschka
- Division of Phoniatrics, ENT University HospitalMedical University of GrazGrazAustria
| |
Collapse
|
3
|
Arnold D, Thielker J, Klingner CM, Guntinas-Lichius O, Volk GF. Selective zygomaticus muscle activation by ball electrodes in synkinetically reinnervated patients after facial paralysis. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1205154. [PMID: 37908489 PMCID: PMC10613664 DOI: 10.3389/fresc.2023.1205154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023]
Abstract
Introduction Although many different treatments were developed for facial palsy, only a few therapeutic options are available for facial synkinesis. Electrical stimulation of specific muscles via implants could be useful in restoring facial symmetry in synkinetic patients. A challenge in developing stimulation devices is finding the right stimulation location, type, and amplitude. This work assesses the ability to selectively stimulate the zygomaticus muscle (ZYG) in patients with oral-ocular synkinesis to elicit a visually detectable response of the ipsilateral corner of the mouth (COM), without causing a reaction of the orbicularis oculi muscle (OOM). We aimed to assess how close to the COM the stimulation should be delivered in order to be selective. Methods A total of 10 patients (eight females, two males) were enrolled. Facial function was graded according to the Sunnybrook facial grading system. Needle EMG was used to test the activities of the muscles, during volitional and "unintended" movements, and the degree of synkinesis of the ZYG and OOM. Two ball electrodes connected to an external stimulator were placed on the paretic ZYG, as close as possible to the COM. Results Independent of the waveform with which the stimulation was presented, a selective ZYG response was observed within 4.5 cm of the horizontal plane and 3 cm of the vertical plane of the COM. When the distance between the electrodes was kept to ≤2 cm, the amplitude necessary to trigger a response ranged between 3 and 6 mA when the stimulation was delivered with triangular pulses and between 2.5 and 3.5 mA for rectangular pulses. The required amplitude did not seem to be dependent on the applied phase duration (PD), as long as the PD was ≥5 ms. Conclusion Our results show that selective stimulation of the ZYG presenting synkinetic ZYG-OOM reinnervation can be achieved using a broad PD range (25-1,000 ms) and an average amplitude ≤6 mA, which may be further decreased to 3.5 mA if the stimulation is delivered via rectangular rather than triangular waves. The most comfortable and effective results were observed with PDs between 50 and 250 ms, suggesting that this range should be selected in future studies. Clinical Trial Registration [https://drks.de/search/de/trial/DRKS00019992], identifier (DRKS00019992).
Collapse
Affiliation(s)
- Dirk Arnold
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
- Facial-Nerve-Center Jena, Jena University Hospital, Jena, Germany
| | - Jovanna Thielker
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
- Facial-Nerve-Center Jena, Jena University Hospital, Jena, Germany
| | - Carsten M. Klingner
- Facial-Nerve-Center Jena, Jena University Hospital, Jena, Germany
- Department of Neurology, Jena University Hospital, Jena, Germany
- Center for Rare Diseases, Jena University Hospital, Jena, Germany
| | - Orlando Guntinas-Lichius
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
- Facial-Nerve-Center Jena, Jena University Hospital, Jena, Germany
- Center for Rare Diseases, Jena University Hospital, Jena, Germany
| | - Gerd Fabian Volk
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
- Facial-Nerve-Center Jena, Jena University Hospital, Jena, Germany
- Center for Rare Diseases, Jena University Hospital, Jena, Germany
| |
Collapse
|
4
|
Otto S, Michler JK, Dhein S, Mülling CKW. Development of a constant pressure perfused ex vivo model of the equine larynx. PLoS One 2021; 16:e0251530. [PMID: 34014952 PMCID: PMC8136745 DOI: 10.1371/journal.pone.0251530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/27/2021] [Indexed: 11/28/2022] Open
Abstract
Distal axonopathy is seen in a broad range of species including equine patients. In horses, this degenerative disorder of the recurrent laryngeal nerve is described as recurrent laryngeal neuropathy (RLN). The dysfunctional innervation of the cricoarytenoideus dorsalis muscle (CAD) leads to a loss of performance in affected horses. In general, ex vivo models of the larynx are rare and for equine patients, just one short report is available. To allow for testing new therapy approaches in an isolated organ model, we examined equine larynges in a constant pressure perfused setup. In order to check the vitality and functionality of the isolated larynx, the vessels´ reaction to norepinephrine (NE) and sodium nitroprusside (NP) as vasoactive agents was tested. Additionally, the contractility of the CAD was checked via electrical stimulation. To determine the extent of hypoxic alterations, lactate dehydrogenase (LDH) and lactate were measured and an immunofluorescent analysis of hypoxia-inducible factor (HIF-1α), a key transcription factor in hypoxia, was performed. For this, a hypoxia-induced cell culture for HIF-1α was developed. The application of NE led to an expected vasoconstriction while NP caused the expected vasodilation. During a perfusion period of 352 ±20.78 min, LDH values were in the reference range and lactate values slightly exceeded the reference range at the end of the perfusion. HIF-1α nuclear translocation could reliably be detected in the hypoxia-induced cell cultures, but not in sections of the perfused CAD. With the approach presented here, a solid basis for perfusing equine larynges was established and may serve as a tool for further investigations of equine larynx disorders as well as a transferrable model for other species.
Collapse
Affiliation(s)
- Sven Otto
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Germany
| | - Jule K. Michler
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Germany
- * E-mail:
| | | | - Christoph K. W. Mülling
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Germany
| |
Collapse
|
5
|
Gundelach LA, Hüser MA, Beutner D, Ruther P, Bruegmann T. Towards the clinical translation of optogenetic skeletal muscle stimulation. Pflugers Arch 2020; 472:527-545. [PMID: 32415463 PMCID: PMC7239821 DOI: 10.1007/s00424-020-02387-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/05/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
Abstract
Paralysis is a frequent phenomenon in many diseases, and to date, only functional electrical stimulation (FES) mediated via the innervating nerve can be employed to restore skeletal muscle function in patients. Despite recent progress, FES has several technical limitations and significant side effects. Optogenetic stimulation has been proposed as an alternative, as it may circumvent some of the disadvantages of FES enabling cell type–specific, spatially and temporally precise stimulation of cells expressing light-gated ion channels, commonly Channelrhodopsin2. Two distinct approaches for the restoration of skeletal muscle function with optogenetics have been demonstrated: indirect optogenetic stimulation through the innervating nerve similar to FES and direct optogenetic stimulation of the skeletal muscle. Although both approaches show great promise, both have their limitations and there are several general hurdles that need to be overcome for their translation into clinics. These include successful gene transfer, sustained optogenetic protein expression, and the creation of optically active implantable devices. Herein, a comprehensive summary of the underlying mechanisms of electrical and optogenetic approaches is provided. With this knowledge in mind, we substantiate a detailed discussion of the advantages and limitations of each method. Furthermore, the obstacles in the way of clinical translation of optogenetic stimulation are discussed, and suggestions on how they could be overcome are provided. Finally, four specific examples of pathologies demanding novel therapeutic measures are discussed with a focus on the likelihood of direct versus indirect optogenetic stimulation.
Collapse
Affiliation(s)
- Lili A Gundelach
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany
| | - Marc A Hüser
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Göttingen, Germany
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Göttingen, Germany
| | - Patrick Ruther
- Microsystem Materials Laboratory, Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Cluster of Excellence at the University of Freiburg, Freiburg, Germany
| | - Tobias Bruegmann
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany.
- DZHK e.V. (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
6
|
Riedler DC, Zsoldos RR, Robel M, Jobst ID, Licka TF. Movement Caused by Electrical Stimulation of the Lumbosacral Region in Standing Horses. J Equine Vet Sci 2020; 91:103116. [PMID: 32684261 DOI: 10.1016/j.jevs.2020.103116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/12/2020] [Accepted: 05/04/2020] [Indexed: 11/29/2022]
Abstract
Electrical stimulation is commonly used as a modality for physical therapy in human and veterinary medicine. However, studies measuring the movement generated by electrical stimulation in horses are rare. The present study therefore evaluates the range of movement provoked by a commercially available physical therapy unit (FES310) and contrasts it with the movement generated by manually induced pelvic inclination (back rounding). Ten horses were tested on three measurement days over one week. Electrical stimulation was applied via a back treatment pad (belonging to the FES310 system) containing six electrodes (three on either side of the spine) placed over the lumbosacral region. This system produced a pulsed, biphasic electrical stimulation in a rectangular waveform which was gradually increased to a maximum of 10 volts. Before and after electrical stimulation testing, manual pelvic inclination was achieved by pressure on two points lateral to the root of the tail. Muscle tone and lameness were evaluated before and after treatments. Skinfold thickness, body condition score, and body mass were measured to detect possible confounding factors. Using kinematics, the angle ranges during movement of ten three-dimensional angles of the trunk, the pelvis, and the hind limbs were further analyzed. Movement was produced with manual stimulation in every tested individual on all measurement days and with electrical stimulation on at least one measurement day. The electrical stimulation led to significantly (P < .05) smaller angle ranges which were 15 %-57 % of the median of the manually stimulated movement. Strong positive correlations between angle ranges of the electrically generated movement were found for the hind limbs implicating their involvement in the movement created. Correlations between skinfold thickness, body condition score, and body mass with the angle ranges were weak and not significant. Before and after electrical and manual stimulation, muscle tone and lameness were similar. In the present study, both electrical and manual stimulation were proven to produce significant trunk and hind limb movement. Within this study's electrical stimulation treatment protocol, the movement generated by electrical stimulation was significantly less than the movement caused by manual pelvic inclination. However, electrical stimulation could easily be applied over a longer period and in a higher frequency than it would be possible for manual pelvic inclination. This treatment shows potential for stabilization and or mobilization of the lumbosacral region, although its efficiency as a therapeutic tool and its effect on specific orthopedic problems and is to be evaluated in further research.
Collapse
Affiliation(s)
- Daniela C Riedler
- University Clinic for Horses, Department of Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Rebeka R Zsoldos
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Matthias Robel
- University Clinic for Horses, Department of Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Isabelle D Jobst
- University Clinic for Horses, Department of Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Theresia F Licka
- University Clinic for Horses, Department of Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria; Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United Kingdom.
| |
Collapse
|
7
|
Hamdan AL, Khalifee E, Al Arab N, Asmar K, Hourani R. Volumetric measures of the paralyzed vocal fold using computerized tomography; its clinical implication. LOGOP PHONIATR VOCO 2020; 46:42-46. [PMID: 32319340 DOI: 10.1080/14015439.2020.1753809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To report the volumetric measures of the paralyzed vocal fold in patients undergoing injection laryngoplasty. MATERIAL AND METHOD All the medical records of patients with unilateral vocal fold paralysis who had high resolution computerized tomography scan of the neck and chest prior to injection laryngoplasty between October 2015 and May 2018 were included. Volumetric evaluation of the vocal folds was performed by measuring the vocal fold height using coronal images and the vocal fold length and width using axial images. RESULTS A total of 21 patients divided into 13 males and 8 females were identified. The mean age was 56.66 ± 20.94 years. The mean volume of the paralyzed vocal fold was significantly smaller than that of the non-paralyzed vocal fold (p < .05). Similarly, the mean length and height of the paralyzed vocal folds were smaller than those of the non-paralyzed vocal folds (p < .05). CONCLUSION Volumetric measurements of the paralyzed vocal fold in comparison to the normal vocal fold in a group of 21 patients with unilateral vocal fold paralysis shows the presence of significant difference between the normal and affected site, and the presence of large inter-subject variation. Information on the volume difference between the two vocal folds may be used to better estimate the amount that needs to be injected in medialization procedures.
Collapse
Affiliation(s)
| | - Elie Khalifee
- American University of Beirut Medical Center, Beirut, Lebanon
| | - Natally Al Arab
- American University of Beirut Medical Center, Beirut, Lebanon
| | - Karl Asmar
- American University of Beirut Medical Center, Beirut, Lebanon
| | - Roula Hourani
- American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
8
|
Effect of voice therapy with or without transcutaneous electrical stimulation on recovery of injured macroscopically intact recurrent laryngeal nerve after thyroid surgery. Eur Arch Otorhinolaryngol 2020; 277:933-938. [PMID: 31980883 PMCID: PMC7031404 DOI: 10.1007/s00405-020-05806-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/18/2020] [Indexed: 10/28/2022]
Abstract
PURPOSE Electrical stimulation-supported therapy is an often used modality. However, it still belongs to experimental methods in the human larynx. Data are lacking with which to evaluate the real effect in recurrent laryngeal nerve injury. The aim of this study was to investigate whether transcutaneous electrical stimulation added to voice therapy has a beneficial effect compared to voice therapy alone on vocal fold movement recovery in the case of an injured macroscopically intact recurrent laryngeal nerve. METHODS Adults with unilateral vocal fold paralysis after thyroidectomy, in which the recurrent laryngeal nerve was left macroscopically intact, were included in this case-control study performed in tertiary referral hospital between September 2006 and June 2018. Among 175 eligible participants, 158 were included. Compliance with 6 months follow-up was 94.3%. INTERVENTIONS medicament therapy and voice therapy (group 1) vs. medicament therapy and voice therapy and transcutaneous electrical stimulation (group 2). MAIN OUTCOME vocal fold movement. RESULTS A total of 149 patients were included in the analysis (group 1, 89 patients; group 2, 60 patients). The groups were homogenous. In groups 1 and 2, 64% and 60% of vocal folds, respectively, were improved after 6 months (P = 0.617). No difference was found between patients who improved and patients who did not improve. CONCLUSIONS Adding transcutaneous electrical stimulation to voice therapy provided no beneficial effect on the recovery of vocal fold movement. Therefore, its indications should be re-evaluated; it is questionable whether stimulation should be routinely recommended.
Collapse
|
9
|
Chandrasekaran S, Davis J, Bersch I, Goldberg G, Gorgey AS. Electrical stimulation and denervated muscles after spinal cord injury. Neural Regen Res 2020; 15:1397-1407. [PMID: 31997798 PMCID: PMC7059583 DOI: 10.4103/1673-5374.274326] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spinal cord injury (SCI) population with injury below T10 or injury to the cauda equina region is characterized by denervated muscles, extensive muscle atrophy, infiltration of intramuscular fat and formation of fibrous tissue. These morphological changes may put individuals with SCI at higher risk for developing other diseases such as various cardiovascular diseases, diabetes, obesity and osteoporosis. Currently, there is no available rehabilitation intervention to rescue the muscles or restore muscle size in SCI individuals with lower motor neuron denervation. We, hereby, performed a review of the available evidence that supports the use of electrical stimulation in restoration of denervated muscle following SCI. Long pulse width stimulation (LPWS) technique is an upcoming method of stimulating denervated muscles. Our primary objective is to explore the best stimulation paradigms (stimulation parameters, stimulation technique and stimulation wave) to achieve restoration of the denervated muscle. Stimulation parameters, such as the pulse duration, need to be 100–1000 times longer than in innervated muscles to achieve desirable excitability and contraction. The use of electrical stimulation in animal and human models induces muscle hypertrophy. Findings in animal models indicate that electrical stimulation, with a combination of exercise and pharmacological interventions, have proven to be effective in improving various aspects like relative muscle weight, muscle cross sectional area, number of myelinated regenerated fibers, and restoring some level of muscle function. Human studies have shown similar outcomes, identifying the use of LPWS as an effective strategy in increasing muscle cross sectional area, the size of muscle fibers, and improving muscle function. Therefore, displaying promise is an effective future stimulation intervention. In summary, LPWS is a novel stimulation technique for denervated muscles in humans with SCI. Successful studies on LPWS of denervated muscles will help in translating this stimulation technique to the clinical level as a rehabilitation intervention after SCI.
Collapse
Affiliation(s)
| | - John Davis
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Ines Bersch
- Swiss Paraplegic Centre, Nottwil, Switzerland; Institute of Clinical Sciences, Department of Orthopedics at the University of Gothenburg, Gothenburg, Sweden
| | - Gary Goldberg
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University; Electrodiagnostic Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center; Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
10
|
Eickhoff S, Jarvis JC. An Investigation of Neural Stimulation Efficiency With Gaussian Waveforms. IEEE Trans Neural Syst Rehabil Eng 2019; 28:104-112. [PMID: 31751280 DOI: 10.1109/tnsre.2019.2954004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Previous computational studies predict that Gaussian shaped waveforms use the least energy to activate nerves. The primary goal of this study was to examine the claimed potential of up to 60% energy savings with these waveforms over a range of phase widths (50- [Formula: see text]) in an animal model. METHODS The common peroneal nerve of anaesthetized rats was stimulated via monopolar and bipolar electrodes with single stimuli. The isometric peak twitch force of the extensor digitorum longus muscle was recorded to indicate the extent of neural activation. The energy consumption, charge injection and maximum instantaneous power values required to reach 50% neural activation were compared between Gaussian pulses and standard rectangular stimuli. RESULTS Energy savings in the 50- [Formula: see text] range of phase widths did not exceed 17% and were accompanied by significant increases in maximum instantaneous power of 110-200%. Charge efficiency was found to be increased over the whole range of tested phase widths with Gaussian compared to rectangular pulses and reached up to 55% at 1ms phase width. CONCLUSION These findings challenge the claims of up to 60% energy savings with Gaussian like stimulation waveforms. The moderate energy savings achieved with the novel waveform are accompanied with considerable increases in maximal instantaneous power. Larger power sources would therefore be required, and this opposes the trend for implant miniaturization. SIGNIFICANCE This is the first study to comprehensively investigate stimulation efficiency of Gaussian waveforms. It sheds new light on the practical potential of such stimulation waveforms.
Collapse
|
11
|
Cercone M, Jarvis JC, Ducharme NG, Perkins J, Piercy RJ, Willand MP, Mitchell LM, Sledziona M, Soderholm L, Cheetham J. Functional electrical stimulation following nerve injury in a large animal model. Muscle Nerve 2019; 59:717-725. [PMID: 30815883 DOI: 10.1002/mus.26460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Controversy exists over the effects of functional electrical stimulation (FES) on reinnervation. We hypothesized that intramuscular FES would not delay reinnervation after recurrent laryngeal nerve (RLn) axonotmesis. METHODS RLn cryo-injury and electrode implantation in ipsilateral posterior cricoarytenoid muscle (PCA) were performed in horses. PCA was stimulated for 20 weeks in eight animals; seven served as controls. Reinnervation was monitored through muscle response to hypercapnia, electrical stimulation and exercise. Ultimately, muscle fiber type proportions and minimum fiber diameters, and RLn axon number and degree of myelination were determined. RESULTS Laryngeal function returned to normal in both groups within 22 weeks. FES improved muscle strength and geometry, and induced increased type I:II fiber proportion (p = 0.038) in the stimulated PCA. FES showed no deleterious effects on reinnervation. DISCUSSION Intramuscular electrical stimulation did not delay PCA reinnervation after axonotmesis. FES can represent a supportive treatment to promote laryngeal functional recovery after RLn injury. Muscle Nerve 59:717-725, 2019.
Collapse
Affiliation(s)
- Marta Cercone
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Norm G Ducharme
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Justin Perkins
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Sciences and Services, Royal Veterinary College, London, UK
| | - Richard J Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Sciences and Services, Royal Veterinary College, London, UK
| | | | - Lisa M Mitchell
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Michael Sledziona
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Leo Soderholm
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jonathan Cheetham
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
12
|
Heaton JT, Kobler JB, Otten DM, Hillman RE, Zeitels SM. Development of a Closed-Loop Stimulator for Laryngeal Reanimation: Part 2. Device Testing in the Canine Model of Laryngeal Paralysis. Ann Otol Rhinol Laryngol 2019; 128:53S-70S. [PMID: 30843434 DOI: 10.1177/0003489418820545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE: Laryngeal paralysis of central or peripheral origin can potentially be treated using functional electrical stimulation (FES) of laryngeal muscles. Experiments in canines (dogs) were performed using implant prototypes capable of closed-loop FES to refine engineering designs and specifications, test surgical approaches for implantation, and better understand the in vivo effects of laryngeal muscle stimulation on short- and long-term glottic function. STUDY DESIGN: Prospective, laboratory. METHODS: We designed and tested a series of microprocessor-based implantable devices that can stimulate glottic opening or closing based on input from physiological control signals (real-time processing of electromyographic [EMG] signals). After acute device testing experiments, 2 dogs were implanted for 8 and 24 months, with periodic testing of closed-loop laryngeal muscle stimulation triggered from EMG signals. In total, 5 dogs were tested for the effects of laryngeal muscle stimulation on vocal fold (VF) posturing in larynges with nerve supplies that were intact (7 VFs), synkinetically reinnervated (2 VFs), or chronically denervated (1 VF). In 3 cases, the stimulation was combined with airflow-driven phonation to study the consequent modulation of phonatory parameters. RESULTS: Initial device prototypes used inductive coupling for power and communication, while later iterations used battery power and infrared light communication (detailed descriptions are provided in the Part 1 companion paper). Two animals were successfully implanted with the inductively powered units, which operated until removed at 8 months in 1 animal or for more than 16 months in the second animal. Surgically, the encapsulated implants were well tolerated, and procedures for placing, attaching, and connecting the devices were developed. To simulate EMG control signals in anesthetized animals, we created 2 types of nerve/muscle signal sources. In one approach, a neck muscle had a cuff electrode placed on its motor nerve that was connected to transdermal electrical connection ports for periodic testing. In the second approach, the recurrent laryngeal nerve on one side of the larynx was stimulated to generate a VF EMG signal, which was then used to trigger FES of the paralyzed contralateral side (eg, restoring VF movement symmetry). Implant testing identified effective stimulation parameters and closed-loop stimulation artifact rejection techniques for FES of both healthy and paralyzed VFs. Stimulation levels effective for VF adduction did not cause signs of discomfort during awake testing. CONCLUSION: Our inductive and battery-powered prototypes performed effectively during in vivo testing, and the 2 units that were implanted for long-term evaluation held up well. As a proof of concept, we demonstrated that elicited neck strap muscle or laryngeal EMG potentials could be used as a control signal for closed-loop stimulation of laryngeal adduction and vocal pitch modulation, depending on electrode positioning, and that VFs were stimulable in the presence of synkinetic reinnervation or chronic denervation.
Collapse
Affiliation(s)
- James T Heaton
- 1 Department of Surgery, Harvard Medical School, Boston, MA, USA
- 2 Division of Laryngeal Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - James B Kobler
- 1 Department of Surgery, Harvard Medical School, Boston, MA, USA
- 2 Division of Laryngeal Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David M Otten
- 3 Laboratory for Electromagnetic and Electronic Systems, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert E Hillman
- 1 Department of Surgery, Harvard Medical School, Boston, MA, USA
- 2 Division of Laryngeal Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Steven M Zeitels
- 1 Department of Surgery, Harvard Medical School, Boston, MA, USA
- 2 Division of Laryngeal Surgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
13
|
Gugatschka M, Jarvis JC, Perkins JD, Bubalo V, Wiederstein-Grasser I, Lanmüller H, Gerstenberger C, Karbiener M. Functional Electrical Stimulation Leads to Increased Volume of the Aged Thyroarytenoid Muscle. Laryngoscope 2018; 128:2852-2857. [PMID: 30284246 PMCID: PMC6586045 DOI: 10.1002/lary.27342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2018] [Indexed: 12/14/2022]
Abstract
Objectives/Hypothesis To reverse sarcopenia and increase the volumes of atrophied laryngeal muscles by functional electrical stimulation (FES) using a minimal invasive surgical procedure in an aged ovine model. Study Design Prospective animal study. Methods A stimulation electrode was placed unilaterally near the terminal adduction branch of the recurrent laryngeal nerve (RLN) adjacent to the right cricothyroid joint. The electrode was connected to an implant located subcutaneously at the neck region. Predesigned training patterns were automatically delivered by a bidirectional radio frequency link using a programming device and were repeated automatically by the implant every other day over 11 weeks in the awake animal. Outcome parameters comprised volumetric measurements based on three‐dimensional reconstructions of the entire thyroarytenoid muscle (TAM), as well as gene expression analyses. Results We found significant increases of the volumes of the stimulated TAM of 11% and the TAM diameter at the midmembranous parts of the vocal folds of nearly 40%. Based on gene expression, we did not detect a shift of muscle fiber composition. Conclusions FES of the terminal branches of the RLN is a secure and effective way to reverse the effects of age‐related TAM atrophy and to increase volumes of atrophied muscles. Level of Evidence NA Laryngoscope, 128:2852–2857, 2018
Collapse
Affiliation(s)
| | - Jonathan C Jarvis
- School of Sport and Exercise Sciences , Liverpool John Moores University, Liverpool, United Kingdom
| | - Justin D Perkins
- Department of Veterinary Clinical Sciences , Royal Veterinary College, London, United Kingdom
| | - Vladimir Bubalo
- Center of Biomedical Research , Medical University Graz, Graz, Austria
| | | | - Hermann Lanmüller
- Center of Medical Physics and Biomedical Engineering , Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
14
|
Parente EJ. Fifty years of recurring struggles with recurrent laryngeal neuropathy. Equine Vet J 2017; 50:155-158. [PMID: 28976020 DOI: 10.1111/evj.12763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/25/2017] [Indexed: 11/26/2022]
Abstract
Recurrent laryngeal neuropathy appears to be a simple problem that should have a simple solution, yet the complexity and dynamic nature of laryngeal function is underappreciated. This review highlights the challenges and accomplishments that work towards that greater understanding of what is necessary to find a successful solution.
Collapse
Affiliation(s)
- E J Parente
- New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| |
Collapse
|
15
|
van Bremen T, Send T, Sasse P, Bruegmann T. Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function. J Muscle Res Cell Motil 2017; 38:331-337. [PMID: 28918572 DOI: 10.1007/s10974-017-9481-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/07/2017] [Indexed: 02/04/2023]
Abstract
Damage of peripheral nerves results in paralysis of skeletal muscle. Currently, the only treatment option to restore proper function is electrical stimulation of the innervating nerve or of the skeletal muscles directly. However this approach has low spatial and temporal precision leading to co-activation of antagonistic muscles and lacks cell-type selectivity resulting in pain or discomfort by stimulation of sensible nerves. In contrast to electrical stimulation, optogenetic methods enable spatially confined and cell-type selective stimulation of cells expressing the light sensitive channel Channelrhodopsin-2 with precise temporal control over the membrane potential. Herein we summarize the current knowledge about the use of this technology to control skeletal muscle function with the focus on the direct, non-neuronal stimulation of muscle fibers. The high temporal flexibility of using light pulses allows new stimulation patterns to investigate skeletal muscle physiology. Furthermore, the high spatial precision of focused illumination was shown to be beneficial for selective stimulation of distinct nearby muscle groups. Finally, the cell-type specific expression of the light-sensitive effector proteins in muscle fibers will allow pain-free stimulation and open new options for clinical treatments. Therefore, we believe that direct optogenetic stimulation of skeletal muscles is a very potent method for basic scientists that also harbors several distinct advantages over electrical stimulation to be considered for clinical use in the future.
Collapse
Affiliation(s)
- Tobias van Bremen
- Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| | - Thorsten Send
- Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany.
| | - Tobias Bruegmann
- Institute of Physiology I, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany. .,Research Training Group 1873, University of Bonn, 53127, Bonn, Germany.
| |
Collapse
|
16
|
Carraro U, Kern H, Gava P, Hofer C, Loefler S, Gargiulo P, Edmunds K, Árnadóttir ÍD, Zampieri S, Ravara B, Gava F, Nori A, Gobbo V, Masiero S, Marcante A, Baba A, Piccione F, Schils S, Pond A, Mosole S. Recovery from muscle weakness by exercise and FES: lessons from Masters, active or sedentary seniors and SCI patients. Aging Clin Exp Res 2017; 29:579-590. [PMID: 27592133 DOI: 10.1007/s40520-016-0619-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Many factors contribute to the decline of skeletal muscle that occurs as we age. This is a reality that we may combat, but not prevent because it is written into our genome. The series of records from World Master Athletes reveals that skeletal muscle power begins to decline at the age of 30 years and continues, almost linearly, to zero at the age of 110 years. Here we discuss evidence that denervation contributes to the atrophy and slowness of aged muscle. We compared muscle from lifelong active seniors to that of sedentary elderly people and found that the sportsmen have more muscle bulk and slow fiber type groupings, providing evidence that physical activity maintains slow motoneurons which reinnervate muscle fibers. Further, accelerated muscle atrophy/degeneration occurs with irreversible Conus and Cauda Equina syndrome, a spinal cord injury in which the human leg muscles may be permanently disconnected from the nervous system with complete loss of muscle fibers within 5-8 years. We used histological morphometry and Muscle Color Computed Tomography to evaluate muscle from these peculiar persons and reveal that contraction produced by home-based Functional Electrical Stimulation (h-bFES) recovers muscle size and function which is reversed if h-bFES is discontinued. FES also reverses muscle atrophy in sedentary seniors and modulates mitochondria in horse muscles. All together these observations indicate that FES modifies muscle fibers by increasing contractions per day. Thus, FES should be considered in critical care units, rehabilitation centers and nursing facilities when patients are unable or reluctant to exercise.
Collapse
Affiliation(s)
- Ugo Carraro
- IRCCS Fondazione Ospedale San Camillo, Venice, Italy
| | - Helmut Kern
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
- Institute of Physical Medicine and Rehabilitation, Wilhelminenspital, Vienna, Austria
| | - Paolo Gava
- Laboratory of Translational Myology of the Interdepartmental Research Center of Myology, Department of Biomedical Science, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Christian Hofer
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Stefan Loefler
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Paolo Gargiulo
- Institute for Biomedical and Neural Engineering, Reykjavík, Iceland
- Landspítali, Reykjavík, Iceland
| | - Kyle Edmunds
- Institute for Biomedical and Neural Engineering, Reykjavík, Iceland
| | | | - Sandra Zampieri
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
- Laboratory of Translational Myology of the Interdepartmental Research Center of Myology, Department of Biomedical Science, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Barbara Ravara
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
- Laboratory of Translational Myology of the Interdepartmental Research Center of Myology, Department of Biomedical Science, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Francesco Gava
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
- Laboratory of Translational Myology of the Interdepartmental Research Center of Myology, Department of Biomedical Science, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Alessandra Nori
- Laboratory of Translational Myology of the Interdepartmental Research Center of Myology, Department of Biomedical Science, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Valerio Gobbo
- Department of Biomedical Science, C.N.R. Institute of Neuroscience, University of Padova, Padua, Italy
| | - Stefano Masiero
- Rehabilitation Unit, Department of Neuroscience, University of Padova, Padua, Italy
| | | | - Alfonc Baba
- IRCCS Fondazione Ospedale San Camillo, Venice, Italy
| | | | | | - Amber Pond
- Anatomy Department, Southern Illinois University, School of Medicine, Carbondale, IL, USA
| | - Simone Mosole
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria.
- Laboratory of Translational Myology of the Interdepartmental Research Center of Myology, Department of Biomedical Science, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
| |
Collapse
|
17
|
Li Y, Garrett G, Zealear D. Current Treatment Options for Bilateral Vocal Fold Paralysis: A State-of-the-Art Review. Clin Exp Otorhinolaryngol 2017; 10:203-212. [PMID: 28669149 PMCID: PMC5545703 DOI: 10.21053/ceo.2017.00199] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
Vocal fold paralysis (VFP) refers to neurological causes of reduced or absent movement of one or both vocal folds. Bilateral VFP (BVFP) is characterized by inspiratory dyspnea due to narrowing of the airway at the glottic level with both vocal folds assuming a paramedian position. The primary objective of intervention for BVFP is to relieve patients’ dyspnea. Common clinical options for management include tracheostomy, arytenoidectomy and cordotomy. Other options that have been used with varying success include reinnervation techniques and botulinum toxin (Botox) injections into the vocal fold adductors. More recently, research has focused on neuromodulation, laryngeal pacing, gene therapy, and stem cell therapy. These newer approaches have the potential advantage of avoiding damage to the voicing mechanism of the larynx with an added goal of restoring some physiologic movement of the affected vocal folds. However, clinical data are scarce for these new treatment options (i.e., reinnervation and pacing), so more investigative work is needed. These areas of research are expected to provide dramatic improvements in the treatment of BVFP.
Collapse
Affiliation(s)
- Yike Li
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gaelyn Garrett
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David Zealear
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
18
|
Reversing Age Related Changes of the Laryngeal Muscles by Chronic Electrostimulation of the Recurrent Laryngeal Nerve. PLoS One 2016; 11:e0167367. [PMID: 27893858 PMCID: PMC5125708 DOI: 10.1371/journal.pone.0167367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/13/2016] [Indexed: 01/09/2023] Open
Abstract
Age related atrophy of the laryngeal muscles -mainly the thyroarytenoid muscle (TAM)- leads to a glottal gap and consequently to a hoarse and dysphonic voice that significantly affects quality of life. The aim of our study was to reverse this atrophy by inducing muscular hypertrophy by unilateral functional electrical stimulation (FES) of the recurrent laryngeal nerve (RLN) in a large animal model using aged sheep (n = 5). Suitable stimulation parameters were determined by fatiguing experiments of the thyroarytenoid muscle in an acute trial. For the chronic trial an electrode was placed around the right RLN and stimulation was delivered once daily for 29 days. We chose a very conservative stimulation pattern, total stimulation time was two minutes per day, or 0.14% of total time. Overall, the mean muscle fiber diameter of the stimulated right TAM was significantly larger than the non-stimulated left TAM (30μm±1.1μm vs. 28μm±1.1 μm, p<0.001). There was no significant shift in fiber type distribution as judged by immunohistochemistry. The changes of fiber diameter could not be observed in the posterior cricoarytenoid muscle (PCAM). FES is a possible new treatment option for reversing the effects of age related laryngeal muscle atrophy.
Collapse
|
19
|
Abstract
In this Editor's Review, articles published in 2015 are organized by category and briefly summarized. We aim to provide a brief reflection of the currently available worldwide knowledge that is intended to advance and better human life while providing insight for continued application of technologies and methods of organ Replacement, Recovery, and Regeneration. As the official journal of The International Federation for Artificial Organs, The International Faculty for Artificial Organs, the International Society for Rotary Blood Pumps, the International Society for Pediatric Mechanical Cardiopulmonary Support, and the Vienna International Workshop on Functional Electrical Stimulation, Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level." Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ Replacement, Recovery, and Regeneration from all over the world. We take this time also to express our gratitude to our authors for providing their work to this journal. We offer our very special thanks to our reviewers who give so generously of their time and expertise to review, critique, and especially provide meaningful suggestions to the author's work whether eventually accepted or rejected. Without these excellent and dedicated reviewers, the quality expected from such a journal could not be possible. We also express our special thanks to our Publisher, John Wiley & Sons for their expert attention and support in the production and marketing of Artificial Organs. We look forward to reporting further advances in the coming years.
Collapse
|
20
|
Trachsel D, Svendsen J, Erb T, von Ungern-Sternberg B. Effects of anaesthesia on paediatric lung function. Br J Anaesth 2016; 117:151-63. [DOI: 10.1093/bja/aew173] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|