1
|
Tingle SJ, Thompson ER, Figueiredo RS, Moir JA, Goodfellow M, Talbot D, Wilson CH. Normothermic and hypothermic machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst Rev 2024; 7:CD011671. [PMID: 38979743 PMCID: PMC11232102 DOI: 10.1002/14651858.cd011671.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
BACKGROUND Kidney transplantation is the optimal treatment for kidney failure. Donation, transport and transplant of kidney grafts leads to significant ischaemia reperfusion injury. Static cold storage (SCS), whereby the kidney is stored on ice after removal from the donor until the time of implantation, represents the simplest preservation method. However, technology is now available to perfuse or "pump" the kidney during the transport phase ("continuous") or at the recipient centre ("end-ischaemic"). This can be done at a variety of temperatures and using different perfusates. The effectiveness of these treatments manifests as improved kidney function post-transplant. OBJECTIVES To compare machine perfusion (MP) technologies (hypothermic machine perfusion (HMP) and (sub) normothermic machine perfusion (NMP)) with each other and with standard SCS. SEARCH METHODS We contacted the information specialist and searched the Cochrane Kidney and Transplant Register of Studies until 15 June 2024 using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal, and ClinicalTrials.gov. SELECTION CRITERIA All randomised controlled trials (RCTs) and quasi-RCTs comparing machine perfusion techniques with each other or versus SCS for deceased donor kidney transplantation were eligible for inclusion. All donor types were included (donor after circulatory death (DCD) and brainstem death (DBD), standard and extended/expanded criteria donors). Both paired and unpaired studies were eligible for inclusion. DATA COLLECTION AND ANALYSIS The results of the literature search were screened, and a standard data extraction form was used to collect data. Both of these steps were performed by two independent authors. Dichotomous outcome results were expressed as risk ratios (RR) with 95% confidence intervals (CI). Survival analyses (time-to-event) were performed with the generic inverse variance meta-analysis of hazard ratios (HR). Continuous scales of measurement were expressed as a mean difference (MD). Random effects models were used for data analysis. The primary outcome was the incidence of delayed graft function (DGF). Secondary outcomes included graft survival, incidence of primary non-function (PNF), DGF duration, economic implications, graft function, patient survival and incidence of acute rejection. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS Twenty-two studies (4007 participants) were included. The risk of bias was generally low across all studies and bias domains. The majority of the evidence compared non-oxygenated HMP with standard SCS (19 studies). The use of non-oxygenated HMP reduces the rate of DGF compared to SCS (16 studies, 3078 participants: RR 0.78, 95% CI 0.69 to 0.88; P < 0.0001; I2 = 31%; high certainty evidence). Subgroup analysis revealed that continuous (from donor hospital to implanting centre) HMP reduces DGF (high certainty evidence). In contrast, this benefit over SCS was not seen when non-oxygenated HMP was not performed continuously (low certainty evidence). Non-oxygenated HMP reduces DGF in both DCD and DBD settings in studies performed in the 'modern era' and when cold ischaemia times (CIT) were short. The number of perfusions required to prevent one episode of DGF was 7.69 and 12.5 in DCD and DBD grafts, respectively. Continuous non-oxygenated HMP versus SCS also improves one-year graft survival (3 studies, 1056 participants: HR 0.46, 0.29 to 0.75; P = 0.002; I2 = 0%; high certainty evidence). Assessing graft survival at maximal follow-up confirmed a benefit of continuous non-oxygenated HMP over SCS (4 studies, 1124 participants (follow-up 1 to 10 years): HR 0.55, 95% CI 0.40 to 0.77; P = 0.0005; I2 = 0%; high certainty evidence). This effect was not seen in studies where HMP was not continuous. The effect of non-oxygenated HMP on our other outcomes (PNF, incidence of acute rejection, patient survival, hospital stay, long-term graft function, duration of DGF) remains uncertain. Studies performing economic analyses suggest that HMP is either cost-saving (USA and European settings) or cost-effective (Brazil). One study investigated continuous oxygenated HMP versus non-oxygenated HMP (low risk of bias in all domains); the simple addition of oxygen during continuous HMP leads to additional benefits over non-oxygenated HMP in DCD donors (> 50 years), including further improvements in graft survival, improved one-year kidney function, and reduced acute rejection. One large, high-quality study investigated end-ischaemic oxygenated HMP versus SCS and found end-ischaemic oxygenated HMP (median machine perfusion time 4.6 hours) demonstrated no benefit compared to SCS. The impact of longer periods of end-ischaemic HMP is unknown. One study investigated NMP versus SCS (low risk of bias in all domains). One hour of end ischaemic NMP did not improve DGF compared with SCS alone. An indirect comparison revealed that continuous non-oxygenated HMP (the most studied intervention) was associated with improved graft survival compared with end-ischaemic NMP (indirect HR 0.31, 95% CI 0.11 to 0.92; P = 0.03). No studies investigated normothermic regional perfusion (NRP) or included any donors undergoing NRP. AUTHORS' CONCLUSIONS Continuous non-oxygenated HMP is superior to SCS in deceased donor kidney transplantation, reducing DGF, improving graft survival and proving cost-effective. This is true for both DBD and DCD kidneys, both short and long CITs, and remains true in the modern era (studies performed after 2008). In DCD donors (> 50 years), the simple addition of oxygen to continuous HMP further improves graft survival, kidney function and acute rejection rate compared to non-oxygenated HMP. Timing of HMP is important, and benefits have not been demonstrated with short periods (median 4.6 hours) of end-ischaemic HMP. End-ischaemic NMP (one hour) does not confer meaningful benefits over SCS alone and is inferior to continuous HMP in an indirect comparison of graft survival. Further studies assessing NMP for viability assessment and therapeutic delivery are warranted and in progress.
Collapse
Affiliation(s)
- Samuel J Tingle
- NIHR Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, UK
| | - Emily R Thompson
- Institute of Transplantation, The Freeman Hospital, Newcastle upon Tyne, UK
| | | | | | | | - David Talbot
- The Liver/Renal Unit, The Freeman Hospital, Newcastle upon Tyne, UK
| | - Colin H Wilson
- Institute of Transplantation, The Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Hasjim BJ, Sanders JM, Alexander M, Redfield RR, Ichii H. Perfusion Techniques in Kidney Allograft Preservation to Reduce Ischemic Reperfusion Injury: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2024; 13:642. [PMID: 38929081 PMCID: PMC11200710 DOI: 10.3390/antiox13060642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The limited supply and rising demand for kidney transplantation has led to the use of allografts more susceptible to ischemic reperfusion injury (IRI) and oxidative stress to expand the donor pool. Organ preservation and procurement techniques, such as machine perfusion (MP) and normothermic regional perfusion (NRP), have been developed to preserve allograft function, though their long-term outcomes have been more challenging to investigate. We performed a systematic review and meta-analysis to examine the benefits of MP and NRP compared to traditional preservation techniques. PubMed (MEDLINE), Embase, Cochrane, and Scopus databases were queried, and of 13,794 articles identified, 54 manuscripts were included (n = 41 MP; n = 13 NRP). MP decreased the rates of 12-month graft failure (OR 0.67; 95%CI 0.55, 0.80) and other perioperative outcomes such as delayed graft function (OR 0.65; 95%CI 0.54, 0.79), primary nonfunction (OR 0.63; 95%CI 0.44, 0.90), and hospital length of stay (15.5 days vs. 18.4 days) compared to static cold storage. NRP reduced the rates of acute rejection (OR 0.48; 95%CI 0.35, 0.67) compared to in situ perfusion. Overall, MP and NRP are effective techniques to mitigate IRI and play an important role in safely expanding the donor pool to satisfy the increasing demands of kidney transplantation.
Collapse
Affiliation(s)
- Bima J. Hasjim
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery and Islet Cell Transplantation, University of California–Irvine, Orange, CA 92868, USA; (B.J.H.); (M.A.)
| | - Jes M. Sanders
- Department of Surgery, Division of Transplantation, Northwestern Memorial Hospital, Chicago, IL 60611, USA;
| | - Michael Alexander
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery and Islet Cell Transplantation, University of California–Irvine, Orange, CA 92868, USA; (B.J.H.); (M.A.)
| | - Robert R. Redfield
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery and Islet Cell Transplantation, University of California–Irvine, Orange, CA 92868, USA; (B.J.H.); (M.A.)
| | - Hirohito Ichii
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery and Islet Cell Transplantation, University of California–Irvine, Orange, CA 92868, USA; (B.J.H.); (M.A.)
| |
Collapse
|
3
|
Kang M, Kim S, Choi JY, Kim KS, Jung YK, Park B, Choi D. Ex vivo kidney machine perfusion: meta-analysis of randomized clinical trials. Br J Surg 2024; 111:znae102. [PMID: 38637312 DOI: 10.1093/bjs/znae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Machine perfusion is an organ preservation strategy used to improve function over simple storage in a cold environment. This article presents an updated systematic review and meta-analysis of machine perfusion in deceased donor kidneys. METHODS RCTs from November 2018 to July 2023 comparing machine perfusion versus static cold storage in kidney transplantation were evaluated for systematic review. The primary outcome in meta-analysis was delayed graft function. RESULTS A total 19 studies were included, and 16 comparing hypothermic machine perfusion with static cold storage were analysed. The risk of delayed graft function was lower with hypothermic machine perfusion (risk ratio (RR) 0.77, 95% c.i. 0.69 to 0.86), even in kidneys after circulatory death (RR 0.78, 0.68 to 0.90) or brain death (RR 0.73, 0.63 to 0.84). Full hypothermic machine perfusion decreased the risk of delayed graft function (RR 0.69, 0.60 to 0.79), whereas partial hypothermic machine perfusion did not (RR 0.92, 0.69 to 1.22). Normothermic machine perfusion or short-term oxygenated hypothermic machine perfusion preservation after static cold storage was equivalent to static cold storage in terms of delayed graft function and 1-year graft survival. CONCLUSION Hypothermic machine perfusion reduces delayed graft function risks and normothermic approaches show promise.
Collapse
Affiliation(s)
- Minseok Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Seonju Kim
- Department of Public Health Sciences, Hanyang University College of Medicine, Seoul, Korea
| | - Ji Yoon Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Kyeong Sik Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Yun Kyung Jung
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Boyoung Park
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| |
Collapse
|
4
|
Bhattarai D, Lee SO, MacMillan-Crow LA, Parajuli N. Normal Proteasome Function Is Needed to Prevent Kidney Graft Injury during Cold Storage Followed by Transplantation. Int J Mol Sci 2024; 25:2147. [PMID: 38396827 PMCID: PMC10888692 DOI: 10.3390/ijms25042147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Kidney transplantation is the preferred treatment for end-stage kidney disease (ESKD). However, there is a shortage of transplantable kidneys, and donor organs can be damaged by necessary cold storage (CS). Although CS improves the viability of kidneys from deceased donors, prolonged CS negatively affects transplantation outcomes. Previously, we reported that renal proteasome function decreased after rat kidneys underwent CS followed by transplantation (CS + Tx). Here, we investigated the mechanism underlying proteasome dysfunction and the role of the proteasome in kidney graft outcome using a rat model of CS + Tx. We found that the key proteasome subunits β5, α3, and Rpt6 are modified, and proteasome assembly is impaired. Specifically, we detected the modification and aggregation of Rpt6 after CS + Tx, and Rpt6 modification was reversed when renal extracts were treated with protein phosphatases. CS + Tx kidneys also displayed increased levels of nitrotyrosine, an indicator of peroxynitrite (a reactive oxygen species, ROS), compared to sham. Because the Rpt6 subunit appeared to aggregate, we investigated the effect of CS + Tx-mediated ROS (peroxynitrite) generation on renal proteasome assembly and function. We treated NRK cells with exogenous peroxynitrite and evaluated PAC1 (proteasome assembly chaperone), Rpt6, and β5. Peroxynitrite induced a dose-dependent decrease in PAC1 and β5, but Rpt6 was not affected (protein level or modification). Finally, serum creatinine increased when we inhibited the proteasome in transplanted donor rat kidneys (without CS), recapitulating the effects of CS + Tx. These findings underscore the effects of CS + Tx on renal proteasome subunit dysregulation and also highlight the significance of proteasome activity in maintaining graft function following CS + Tx.
Collapse
Affiliation(s)
- Dinesh Bhattarai
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Seong-Ok Lee
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lee Ann MacMillan-Crow
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Nirmala Parajuli
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
5
|
Ghoneima AS, Sousa Da Silva RX, Gosteli MA, Barlow AD, Kron P. Outcomes of Kidney Perfusion Techniques in Transplantation from Deceased Donors: A Systematic Review and Meta-Analysis. J Clin Med 2023; 12:3871. [PMID: 37373568 DOI: 10.3390/jcm12123871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
The high demand for organs in kidney transplantation and the expansion of the donor pool have led to the widespread implementation of machine perfusion technologies. In this study, we aim to provide an up-to-date systematic review of the developments in this expanding field over the past 10 years, with the aim of answering the question: "which perfusion technique is the most promising technique in kidney transplantation?" A systematic review of the literature related to machine perfusion in kidney transplantation was performed. The primary outcome measure was delayed graft function (DGF), and secondary outcomes included rates of rejection, graft survival, and patient survival rates after 1 year. Based on the available data, a meta-analysis was performed. The results were compared with data from static cold storage, which is still the standard of care in many centers worldwide. A total of 56 studies conducted in humans were included, and 43 studies reported outcomes of hypothermic machine perfusion (HMP), with a DGF rate of 26.4%. A meta-analysis of 16 studies showed significantly lower DGF rates in the HMP group compared to those of static cold storage (SCS). Five studies reported outcomes of hypothermic machine perfusion + O2, with an overall DGF rate of 29.7%. Two studies explored normothermic machine perfusion (NMP). These were pilot studies, designed to assess the feasibility of this perfusion approach in the clinical setting. Six studies reported outcomes of normothermic regional perfusion (NRP). The overall incidence of DGF was 71.5%, as it was primarily used in uncontrolled DCD (Maastricht category I-II). Three studies comparing NRP to in situ cold perfusion showed a significantly lower rate of DGF with NRP. The systematic review and meta-analysis provide evidence that dynamic preservation strategies can improve outcomes following kidney transplantation. More recent approaches such as normothermic machine perfusion and hypothermic machine perfusion + O2 do show promising results but need further results from the clinical setting. This study shows that the implementation of perfusion strategies could play an important role in safely expanding the donor pool.
Collapse
Affiliation(s)
- Ahmed S Ghoneima
- Department of HPB and Transplant Surgery, St. James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK
| | - Richard X Sousa Da Silva
- Swiss HPB and Transplantation Center, Department of Surgery and Transplantation, University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Adam D Barlow
- Department of HPB and Transplant Surgery, St. James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK
| | - Philipp Kron
- Department of HPB and Transplant Surgery, St. James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK
- Swiss HPB and Transplantation Center, Department of Surgery and Transplantation, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
6
|
Hypothermic Machine Perfusion of Extended Donor Criteria Renal Allografts Before Kidney Transplantation: a Systematic Review. CURRENT TRANSPLANTATION REPORTS 2023. [DOI: 10.1007/s40472-023-00388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Abou Taka M, Dugbartey GJ, Sener A. The Optimization of Renal Graft Preservation Temperature to Mitigate Cold Ischemia-Reperfusion Injury in Kidney Transplantation. Int J Mol Sci 2022; 24:ijms24010567. [PMID: 36614006 PMCID: PMC9820138 DOI: 10.3390/ijms24010567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Renal transplantation is the preferred treatment for patients with end-stage renal disease. The current gold standard of kidney preservation for transplantation is static cold storage (SCS) at 4 °C. However, SCS contributes to renal ischemia-reperfusion injury (IRI), a pathological process that negatively impacts graft survival and function. Recent efforts to mitigate cold renal IRI involve preserving renal grafts at higher or subnormothermic temperatures. These temperatures may be beneficial in reducing the risk of cold renal IRI, while also maintaining active biological processes such as increasing the expression of mitochondrial protective metabolites. In this review, we discuss different preservation temperatures for renal transplantation and pharmacological supplementation of kidney preservation solutions with hydrogen sulfide to determine an optimal preservation temperature to mitigate cold renal IRI and enhance renal graft function and recipient survival.
Collapse
Affiliation(s)
- Maria Abou Taka
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada
| | - George J. Dugbartey
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Department of Surgery, Division of Urology, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 1181, Ghana
| | - Alp Sener
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Department of Surgery, Division of Urology, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Correspondence: ; Tel.: +519-685-8500 (ext. 33352)
| |
Collapse
|
8
|
Wlodek E, Kirkpatrick RB, Andrews S, Noble R, Schroyer R, Scott J, Watson CJE, Clatworthy M, Harrison EM, Wigmore SJ, Stevenson K, Kingsmore D, Sheerin NS, Bestard O, Stirnadel-Farrant HA, Abberley L, Busz M, DeWall S, Birchler M, Krull D, Thorneloe KS, Weber A, Devey L. A pilot study evaluating GSK1070806 inhibition of interleukin-18 in renal transplant delayed graft function. PLoS One 2021; 16:e0247972. [PMID: 33684160 PMCID: PMC7939287 DOI: 10.1371/journal.pone.0247972] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/11/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Delayed graft function (DGF) following renal transplantation is a manifestation of acute kidney injury (AKI) leading to poor long-term outcome. Current treatments have limited effectiveness in preventing DGF. Interleukin-18 (IL18), a biomarker of AKI, induces interferon-γ expression and immune activation. GSK1070806, an anti-IL18 monoclonal antibody, neutralizes activated (mature) IL18 released from damaged cells following inflammasome activation. This phase IIa, single-arm trial assessed the effect of a single dose of GSK1070806 on DGF occurrence post donation after circulatory death (DCD) kidney transplantation. METHODS The 3 mg/kg intravenous dose was selected based on prior studies and physiologically based pharmacokinetic (PBPK) modeling, indicating the high likelihood of a rapid and high level of IL18 target engagement when administered prior to kidney allograft reperfusion. Utilization of a Bayesian sequential design with a background standard-of-care DGF rate of 50% based on literature, and confirmed via extensive registry data analyses, enabled a statistical efficacy assessment with a minimal sample size. The primary endpoint was DGF frequency, defined as dialysis requirement ≤7 days post transplantation (except for hyperkalemia). Secondary endpoints included safety, pharmacokinetics and pharmacodynamic biomarkers. RESULTS GSK1070806 administration was associated with IL18-GSK1070806 complex detection and increased total serum IL18 levels due to IL18 half-life prolongation induced by GSK1070806 binding. Interferon-γ-induced chemokine levels declined or remained unchanged in most patients. Although the study was concluded prior to the Bayesian-defined stopping point, 4/7 enrolled patients (57%) had DGF, exceeding the 50% standard-of-care rate, and an additional two patients, although not reaching the protocol-defined DGF definition, demonstrated poor graft function. Six of seven patients experienced serious adverse events (SAEs), including two treatment-related SAEs. CONCLUSION Overall, using a Bayesian design and extensive PBPK dose modeling with only a small sample size, it was deemed unlikely that GSK1070806 would be efficacious in preventing DGF in the enrolled DCD transplant population. TRIAL REGISTRATION NCT02723786.
Collapse
Affiliation(s)
- E. Wlodek
- GlaxoSmithKline, Clinical Unit Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - R. B. Kirkpatrick
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - S. Andrews
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - R. Noble
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - R. Schroyer
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - J. Scott
- JMS Statistics Ltd, Pinner, United Kingdom
| | - C. J. E. Watson
- University of Cambridge and the NIHR Cambridge Biomedical Research Centre and the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation at the University of Cambridge, Cambridge, United Kingdom
| | - M. Clatworthy
- University of Cambridge and the NIHR Cambridge Biomedical Research Centre and the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation at the University of Cambridge, Cambridge, United Kingdom
| | | | - S. J. Wigmore
- Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - K. Stevenson
- Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - D. Kingsmore
- Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - N. S. Sheerin
- Newcastle Biomedical Research Centre and the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle University, Newcastle, United Kingdom
| | - O. Bestard
- L’Hospitalet de Llobregat, Bellvitge University Hospital, Kidney Transplant Unit, Barcelona, Spain
| | | | - L. Abberley
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - M. Busz
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - S. DeWall
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - M. Birchler
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - D. Krull
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - K. S. Thorneloe
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - A. Weber
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - L. Devey
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
9
|
Zhao L, Hu C, Han F, Chen D, Ma Y, Cai F, Chen J. Combination of mesenchymal stromal cells and machine perfusion is a novel strategy for organ preservation in solid organ transplantation. Cell Tissue Res 2021; 384:13-23. [PMID: 33439348 PMCID: PMC8016762 DOI: 10.1007/s00441-020-03406-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022]
Abstract
Organ preservation is a prerequisite for an urgent increase in the availability of organs for solid organ transplantation (SOT). An increasing amount of expanded criteria donor (ECD) organs are used clinically. Currently, the paradigm of organ preservation is shifting from simple reduction of cellular metabolic activity to maximal simulation of an ex vivo physiological microenvironment. An ideal organ preservation technique should not only preserve isolated organs but also offer the possibility of rehabilitation and evaluation of organ function prior to transplantation. Based on the fact that mesenchymal stromal cells (MSCs) possess strong regeneration properties, the combination of MSCs with machine perfusion (MP) is expected to be superior to conventional preservation methods. In recent years, several studies have attempted to use this strategy for SOT showing promising outcomes. With better organ function during ex vivo preservation and the potential of utilization of organs previously deemed untransplantable, this strategy is meaningful for patients with organ failure to help overcome organ shortage in the field of SOT.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Dajin Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Yanhong Ma
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Fanghao Cai
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| |
Collapse
|
10
|
Levine MA, Luke PP, Sener A. Canadian survey on the rates of use of intraoperative diuretics and justification for their use during renal allograft reperfusion. Can J Surg 2020. [PMID: 33107815 DOI: 10.1503/cjs.016019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Mannitol and furosemide have been used as diuretics intraoperatively to facilitate early renal allograft function and reduce delayed graft function. As the evidence of any efficacy of these agents is limited, we sought to characterize the use of diuretics among transplant surgeons. METHODS An anonymous online survey was sent to all Canadian transplant programs where kidney transplants are routinely performed. Questions were related to the use and indications for mannitol and furosemide. Responses were collected and analyzed as counts and percentages of respondents. We used χ2 analysis to assess the relationship between demographic factors and survey responses. RESULTS Thirty-five surgeons completed the survey (response rate 50%). Seventy per cent of respondents reported performing 26 or more transplants per year, 88% had formal transplant fellowship training and 67% indicated that they currently train fellows. Only 24% and 12% reported believing that delayed graft function is reduced by mannitol and furosemide use, respectively. However, 73% routinely gave mannitol to patients and 53% routinely gave furosemide. The most common justification given for mannitol use was to induce diuresis (54%); 37% of respondents reported using mannitol because of training dogma. Likewise, 57% used furosemide for diuresis, with 23% reporting that their use of this agent was based on dogma. No relationship emerged between fellowship training, case volume or training program status and the use of any agent. Interestingly, 71% of respondents indicated that a randomized controlled trial evaluating the utility of intraoperative diuretics is needed and that they were interested in participating in such a trial. CONCLUSION Use of intraoperative diuretics and the rationale for their use vary among surgeons. A substantial proportion of surgeons use these medications on the basis of dogma alone. A randomized controlled trial is needed to clarify the role of intraoperative diuretics in kidney transplant surgery.
Collapse
Affiliation(s)
- Max A Levine
- From the Department of Surgery (Levine, Luke, Sener); and the Department of Microbiology and Immunology (Sener), Schulich School of Medicine and Dentistry, Western University, London, Ont.; the Matthew Mailing Centre for Translational Transplant Studies (Luke, Sener); and the Multi-Organ Transplant Program (Levine, Luke, Sener), London Health Sciences Centre, University Hospital, London, Ont
| | - Patrick P Luke
- From the Department of Surgery (Levine, Luke, Sener); and the Department of Microbiology and Immunology (Sener), Schulich School of Medicine and Dentistry, Western University, London, Ont.; the Matthew Mailing Centre for Translational Transplant Studies (Luke, Sener); and the Multi-Organ Transplant Program (Levine, Luke, Sener), London Health Sciences Centre, University Hospital, London, Ont
| | - Alp Sener
- From the Department of Surgery (Levine, Luke, Sener); and the Department of Microbiology and Immunology (Sener), Schulich School of Medicine and Dentistry, Western University, London, Ont.; the Matthew Mailing Centre for Translational Transplant Studies (Luke, Sener); and the Multi-Organ Transplant Program (Levine, Luke, Sener), London Health Sciences Centre, University Hospital, London, Ont
| |
Collapse
|
11
|
Czogalla J, Grahammer F, Puelles VG, Huber TB. A protocol for rat kidney normothermic machine perfusion and subsequent transplantation. Artif Organs 2020; 45:168-174. [PMID: 32780541 DOI: 10.1111/aor.13799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
End-stage renal disease is a major global health burden. The only definitive treatment existing is renal transplantation. Worldwide, the demand for donated kidneys by far exceeds the supply. A novel technique for organ preservation, normothermic machine perfusion (NMP), now promises to increase the potential pool of available organs by extending the spectrum of donors and reducing the incidence of graft failure. First studies in humans and large animals are being performed with promising results, but refinement of the technique, buffer, and machines involved is labor-intensive and expensive. To our knowledge, this is the first report of a small animal model of NMP and subsequent transplantation.
Collapse
Affiliation(s)
- Jan Czogalla
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,University Transplant Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,University Transplant Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,University Transplant Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Kvietkauskas M, Leber B, Strupas K, Stiegler P, Schemmer P. Machine Perfusion of Extended Criteria Donor Organs: Immunological Aspects. Front Immunol 2020; 11:192. [PMID: 32180769 PMCID: PMC7057848 DOI: 10.3389/fimmu.2020.00192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
Due to higher vulnerability and immunogenicity of extended criteria donor (ECD) organs used for organ transplantation (Tx), the discovery of new treatment strategies, involving tissue allorecognition pathways, is important. The implementation of machine perfusion (MP) led to improved estimation of the organ quality and introduced the possibility to achieve graft reconditioning prior to Tx. A significant number of experimental and clinical trials demonstrated increasing support for MP as a promising method of ECD organ preservation compared to classical static cold storage. MP reduced ischemia-reperfusion injury resulting in the protection from inadequate activation of innate immunity. However, there are no general agreements on MP protocols, and clinical application is limited. The objective of this comprehensive review is to summarize literature on immunological effects of MP of ECD organs based on experimental studies and clinical trials.
Collapse
Affiliation(s)
- Mindaugas Kvietkauskas
- Department of General, Visceral and Transplant Surgery, Medical University of Graz, Graz, Austria.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Bettina Leber
- Department of General, Visceral and Transplant Surgery, Medical University of Graz, Graz, Austria
| | | | - Philipp Stiegler
- Department of General, Visceral and Transplant Surgery, Medical University of Graz, Graz, Austria
| | - Peter Schemmer
- Department of General, Visceral and Transplant Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
13
|
Abstract
Composite tissue (CT) preservation is important to outcomes after replant or transplant. Since the first limb replant, the mainstay of preservation has been static cold storage with the amputated part being placed in moistened gauze over ice. Historically, the gold-standard in solid organ preservation has been static cold storage with specialized solution, but this has recently evolved in the last few decades to develop technologies such as machine perfusion and even persufflation. This review explores the impact of cooling and oxygenation on CT, summarizes the work done in the area of CT preservation, discusses lessons learned from our experience in solid organ preservation, and proposes future directions.
Collapse
|
14
|
Samoylova ML, Nash A, Kuchibhatla M, Barbas AS, Brennan TV. Machine perfusion of donor kidneys may reduce graft rejection. Clin Transplant 2019; 33:e13716. [DOI: 10.1111/ctr.13716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 11/30/2022]
Affiliation(s)
| | - Amanda Nash
- Department of Surgery Duke University Medical Center Durham North Carolina
| | | | - Andrew S. Barbas
- Department of Surgery Duke University Medical Center Durham North Carolina
| | - Todd V. Brennan
- Department of Surgery Cedars‐Sinai Medical Center Los Angeles California
| |
Collapse
|
15
|
Bellini MI, Nozdrin M, Yiu J, Papalois V. Machine Perfusion for Abdominal Organ Preservation: A Systematic Review of Kidney and Liver Human Grafts. J Clin Med 2019; 8:jcm8081221. [PMID: 31443179 PMCID: PMC6723966 DOI: 10.3390/jcm8081221] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022] Open
Abstract
Introduction: To match the current organ demand with organ availability from the donor pool, there has been a shift towards acceptance of extended criteria donors (ECD), often associated with longer ischemic times. Novel dynamic preservation techniques as hypothermic or normothermic machine perfusion (MP) are increasingly adopted, particularly for organs from ECDs. In this study, we compared the viability and incidence of reperfusion injury in kidneys and livers preserved with MP versus Static Cold Storage (SCS). Methods: Systematic review and meta-analysis with a search performed between February and March 2019. MEDLINE, EMBASE and Transplant Library were searched via OvidSP. The Cochrane Library and The Cochrane Central Register of Controlled Trials (CENTRAL) were also searched. English language filter was applied. Results: the systematic search generated 10,585 studies, finally leading to a total of 30 papers for meta-analysis of kidneys and livers. Hypothermic MP (HMP) statistically significantly lowered the incidence of primary nonfunction (PMN, p = 0.003) and delayed graft function (DGF, p < 0.00001) in kidneys compared to SCS, but not its duration. No difference was also noted for serum creatinine or eGFR post-transplantation, but overall kidneys preserved with HMP had a significantly longer one-year graft survival (OR: 1.61 95% CI: 1.02 to 2.53, p = 0.04). Differently from kidneys where the graft survival was affected, there was no significant difference in primary non function (PNF) for livers stored using SCS for those preserved by HMP and NMP. Machine perfusion demonstrated superior outcomes in early allograft dysfunction and post transplantation AST levels compared to SCS, but however, only HMP was able to significantly decrease serum bilirubin and biliary stricture incidence compared to SCS. Conclusions: MP improves DGF and one-year graft survival in kidney transplantation; it appears to mitigate early allograft dysfunction in livers, but more studies are needed to prove its potential superiority in relation to PNF in livers.
Collapse
Affiliation(s)
| | - Mikhail Nozdrin
- School of Medicine, Imperial College London, London SW72AZ, UK
| | - Janice Yiu
- School of Medicine, University College London, London WC1E 6BT, UK
| | - Vassilios Papalois
- Renal and Transplant Directorate, Imperial College Healthcare NHS Trust, London W120HS, UK
- Department of Surgery and Cancer, Imperial College London, London SW72AZ, UK
| |
Collapse
|
16
|
Tingle SJ, Figueiredo RS, Moir JAG, Goodfellow M, Talbot D, Wilson CH. Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst Rev 2019; 3:CD011671. [PMID: 30875082 PMCID: PMC6419919 DOI: 10.1002/14651858.cd011671.pub2] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Kidney transplantation is the optimal treatment for end-stage kidney disease. Retrieval, transport and transplant of kidney grafts causes ischaemia reperfusion injury. The current accepted standard is static cold storage (SCS) whereby the kidney is stored on ice after removal from the donor and then removed from the ice box at the time of implantation. However, technology is now available to perfuse or "pump" the kidney during the transport phase or at the recipient centre. This can be done at a variety of temperatures and using different perfusates. The effectiveness of treatment is manifest clinically as delayed graft function (DGF), whereby the kidney fails to produce urine immediately after transplant. OBJECTIVES To compare hypothermic machine perfusion (HMP) and (sub)normothermic machine perfusion (NMP) with standard SCS. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies to 18 October 2018 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA All randomised controlled trials (RCTs) and quasi-RCTs comparing HMP/NMP versus SCS for deceased donor kidney transplantation were eligible for inclusion. All donor types were included (donor after circulatory (DCD) and brainstem death (DBD), standard and extended/expanded criteria donors). Both paired and unpaired studies were eligible for inclusion. DATA COLLECTION AND ANALYSIS The results of the literature search were screened and a standard data extraction form was used to collect data. Both of these steps were performed by two independent authors. Dichotomous outcome results were expressed as risk ratio (RR) with 95% confidence intervals (CI). Continuous scales of measurement were expressed as a mean difference (MD). Random effects models were used for data analysis. The primary outcome was incidence of DGF. Secondary outcomes included: one-year graft survival, incidence of primary non-function (PNF), DGF duration, long term graft survival, economic implications, graft function, patient survival and incidence of acute rejection. MAIN RESULTS No studies reported on NMP, however one ongoing study was identified.Sixteen studies (2266 participants) comparing HMP with SCS were included; 15 studies could be meta-analysed. Fourteen studies reported on requirement for dialysis in the first week post-transplant (DGF incidence); there is high-certainty evidence that HMP reduces the risk of DGF when compared to SCS (RR 0.77; 95% CI 0.67 to 0.90; P = 0.0006). HMP reduces the risk of DGF in kidneys from DCD donors (7 studies, 772 participants: RR 0.75; 95% CI 0.64 to 0.87; P = 0.0002; high certainty evidence), as well as kidneys from DBD donors (4 studies, 971 participants: RR 0.78, 95% CI 0.65 to 0.93; P = 0.006; high certainty evidence). The number of perfusions required to prevent one episode of DGF (number needed to treat, NNT) was 7.26 and 13.60 in DCD and DBD kidneys respectively. Studies performed in the last decade all used the LifePort machine and confirmed that HMP reduces the incidence of DGF in the modern era (5 studies, 1355 participants: RR 0.77, 95% CI 0.66 to 0.91; P = 0.002; high certainty evidence). Reports of economic analysis suggest that HMP can lead to cost savings in both the North American and European settings.Two studies reported HMP also improves graft survival however we were not able to meta-analyse these results. A reduction in incidence of PNF could not be demonstrated. The effect of HMP on our other outcomes (incidence of acute rejection, patient survival, hospital stay, long-term graft function, duration of DGF) remains uncertain. AUTHORS' CONCLUSIONS HMP is superior to SCS in deceased donor kidney transplantation. This is true for both DBD and DCD kidneys, and remains true in the modern era (studies performed in the last decade). As kidneys from DCD donors have a higher overall DGF rate, fewer perfusions are needed to prevent one episode of DGF (7.26 versus 13.60 in DBD kidneys).Further studies looking solely at the impact of HMP on DGF incidence are not required. Follow-up reports detailing long-term graft survival from participants of the studies already included in this review would be an efficient way to generate further long-term graft survival data.Economic analysis, based on the results of this review, would help cement HMP as the standard preservation method in deceased donor kidney transplantation.RCTs investigating (sub)NMP are required.
Collapse
Affiliation(s)
- Samuel J Tingle
- Newcastle University Medical SchoolFaculty of Medical SciencesFramlington PlaceNewcastle upon TyneUKNE2 4HH
| | | | - John AG Moir
- The Freeman HospitalFreeman RdNewcastle upon TyneUKNE7 7DN
| | - Michael Goodfellow
- Newcastle UniversityNewcastle Medical SchoolFramlington PlaceNewcastle upon TyneUKNE2 4HH
| | - David Talbot
- The Freeman HospitalThe Liver/Renal UnitHigh HeatonNewcastle upon TyneUKNE7 7DN
| | - Colin H Wilson
- The Freeman HospitalInstitute of TransplantationFreeman RoadHigh HeatonNewcastle upon TyneUKNE7 7DN
| |
Collapse
|
17
|
Peng P, Ding Z, He Y, Zhang J, Wang X, Yang Z. Hypothermic Machine Perfusion Versus Static Cold Storage in Deceased Donor Kidney Transplantation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Artif Organs 2018; 43:478-489. [PMID: 30282122 DOI: 10.1111/aor.13364] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/27/2018] [Indexed: 01/17/2023]
Abstract
Static cold storage (SCS) and hypothermic machine perfusion (HMP) are two primary options for renal allograft preservation. Compared with SCS, HMP decreased the incidence of delayed graft function (DGF) and protected graft function. However, more evidence is still needed to prove the advantages of the HMP. In this study, the outcomes of kidney grafts from the two preservation methods were compared by conducting a systematic review and meta-analysis. Randomized controlled trials (RCTs) comparing the effect of hypothermic machine perfusion and static cold storage in deceased donor kidney transplantation were identified through searches of the MEDLINE, EMBASE, and Cochrane databases between January 1, 1980 and December 30, 2017. The primary endpoints were delayed graft function and graft survival. Secondary endpoints included primary non-function (PNF), graft renal function, duration of DGF, acute rejection, postoperative hospital stay and patient survival. Summary effects were calculated as risk ratio (RR) with 95% confidence interval (CI) or mean difference (MD) with 95% confidence intervals (CI). A total of 13 RCTs were included, including 2048 kidney transplant recipients. The results indicated that compared with SCS, HMP decreased the incidence of DGF (RR 0.78, 95% CI 0.69-0.87, P < 0.0001), and improved the graft survival at 3 years (RR 1.06, 95% CI 1.02-1.11, P = 0.009). There was no significant difference in other endpoints. HMP might be a more desirable method of preservation for kidney grafts. The long-term outcomes of kidney allografts stored by hypothermic machine perfusion still need to be further investigated.
Collapse
Affiliation(s)
- Panxin Peng
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Zhenshan Ding
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Yuhui He
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Jun Zhang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Xuming Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Zhihao Yang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Urology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
18
|
|
19
|
Abstract
In this Editor's Review, articles published in 2017 are organized by category and summarized. We provide a brief reflection of the research and progress in artificial organs intended to advance and better human life while providing insight for continued application of these technologies and methods. Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level." Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ Replacement, Recovery, and Regeneration from all over the world. Peer-reviewed Special Issues this year included contributions from the 12th International Conference on Pediatric Mechanical Circulatory Support Systems and Pediatric Cardiopulmonary Perfusion edited by Dr. Akif Undar, Artificial Oxygen Carriers edited by Drs. Akira Kawaguchi and Jan Simoni, the 24th Congress of the International Society for Mechanical Circulatory Support edited by Dr. Toru Masuzawa, Challenges in the Field of Biomedical Devices: A Multidisciplinary Perspective edited by Dr. Vincenzo Piemonte and colleagues and Functional Electrical Stimulation edited by Dr. Winfried Mayr and colleagues. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide meaningful suggestions to the author's work whether eventually accepted or rejected. Without these excellent and dedicated reviewers the quality expected from such a journal could not be possible. We also express our special thanks to our Publisher, John Wiley & Sons for their expert attention and support in the production and marketing of Artificial Organs. We look forward to reporting further advances in the coming years.
Collapse
|