1
|
Kanagarajan D, Heinsar S, Gandini L, Suen JY, Dau VT, Pauls J, Fraser JF. Preclinical Studies on Pulsatile Veno-Arterial Extracorporeal Membrane Oxygenation: A Systematic Review. ASAIO J 2023; 69:e167-e180. [PMID: 36976324 DOI: 10.1097/mat.0000000000001922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Refractory cardiogenic shock is increasingly being treated with veno-arterial extracorporeal membrane oxygenation (V-A ECMO), without definitive proof of improved clinical outcomes. Recently, pulsatile V-A ECMO has been developed to address some of the shortcomings of contemporary continuous-flow devices. To describe current pulsatile V-A ECMO studies, we conducted a systematic review of all preclinical studies in this area. We adhered to PRISMA and Cochrane guidelines for conducting systematic reviews. The literature search was performed using Science Direct, Web of Science, Scopus, and PubMed databases. All preclinical experimental studies investigating pulsatile V-A ECMO and published before July 26, 2022 were included. We extracted data relating to the 1) ECMO circuits, 2) pulsatile blood flow conditions, 3) key study outcomes, and 4) other relevant experimental conditions. Forty-five manuscripts of pulsatile V-A ECMO were included in this review detailing 26 in vitro , two in silico , and 17 in vivo experiments. Hemodynamic energy production was the most investigated outcome (69%). A total of 53% of studies used a diagonal pump to achieve pulsatile flow. Most literature on pulsatile V-A ECMO focuses on hemodynamic energy production, whereas its potential clinical effects such as favorable heart and brain function, end-organ microcirculation, and decreased inflammation remain inconclusive and limited.
Collapse
Affiliation(s)
- Dhayananth Kanagarajan
- From the Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- School of Engineering and Built Environment, Griffith University, Gold Coast, Queensland, Australia
| | - Silver Heinsar
- From the Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Department of Intensive Care, North Estonia Medical Centre, Tallinn, Estonia
| | - Lucia Gandini
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Jacky Y Suen
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Van Thanh Dau
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jo Pauls
- From the Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- School of Engineering and Built Environment, Griffith University, Gold Coast, Queensland, Australia
| | - John F Fraser
- From the Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- School of Engineering and Built Environment, Griffith University, Gold Coast, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Hemodynamic Effect of Pulsatile on Blood Flow Distribution with VA ECMO: A Numerical Study. Bioengineering (Basel) 2022; 9:bioengineering9100487. [PMID: 36290455 PMCID: PMC9598990 DOI: 10.3390/bioengineering9100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
The pulsatile properties of arterial flow and pressure have been thought to be important. Nevertheless, a gap still exists in the hemodynamic effect of pulsatile flow in improving blood flow distribution of veno-arterial extracorporeal membrane oxygenation (VA ECMO) supported by the circulatory system. The finite-element models, consisting of the aorta, VA ECMO, and intra-aortic balloon pump (IABP) are proposed for fluid-structure interaction calculation of the mechanical response. Group A is cardiogenic shock with 1.5 L/min of cardiac output. Group B is cardiogenic shock with VA ECMO. Group C is added to IABP based on Group B. The sum of the blood flow of cardiac output and VA ECMO remains constant at 4.5 L/min in Group B and Group C. With the recovery of the left ventricular, the flow of VA ECMO declines, and the effective blood of IABP increases. IABP plays the function of balancing blood flow between left arteria femoralis and right arteria femoralis compared with VA ECMO only. The difference of the equivalent energy pressure (dEEP) is crossed at 2.0 L/min to 1.5 L/min of VA ECMO. PPI’ (the revised pulse pressure index) with IABP is twice as much as without IABP. The intersection with two opposing blood generates the region of the aortic arch for the VA ECMO (Group B). In contrast to the VA ECMO, the blood intersection appears from the descending aorta to the renal artery with VA ECMO and IABP. The maximum time-averaged wall shear stress (TAWSS) of the renal artery is a significant difference with or not IABP (VA ECMO: 2.02 vs. 1.98 vs. 2.37 vs. 2.61 vs. 2.86 Pa; VA ECMO and IABP: 8.02 vs. 6.99 vs. 6.62 vs. 6.30 vs. 5.83 Pa). In conclusion, with the recovery of the left ventricle, the flow of VA ECMO declines and the effective blood of IABP increases. The difference between the equivalent energy pressure (EEP) and the surplus hemodynamic energy (SHE) indicates the loss of pulsation from the left ventricular to VA ECMO. 2.0 L/min to 1.5 L/min of VA ECMO showing a similar hemodynamic energy loss with the weak influence of IABP.
Collapse
|
3
|
Wang S, Moroi MK, Kunselman AR, Myers JL, Ündar A. Evaluation of centrifugal blood pumps in term of hemodynamic performance using simulated neonatal and pediatric ECMO circuits. Artif Organs 2019; 44:16-27. [DOI: 10.1111/aor.13436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Shigang Wang
- Department of Pediatrics, Penn State Health Pediatric Cardiovascular Research Center Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital Hershey PA USA
| | - Morgan K. Moroi
- Department of Pediatrics, Penn State Health Pediatric Cardiovascular Research Center Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital Hershey PA USA
| | - Allen R. Kunselman
- Public Health and Sciences Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital Hershey PA USA
| | - John L. Myers
- Department of Pediatrics, Penn State Health Pediatric Cardiovascular Research Center Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital Hershey PA USA
- Department of Surgery and Bioengineering Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital Hershey PA USA
| | - Akif Ündar
- Department of Pediatrics, Penn State Health Pediatric Cardiovascular Research Center Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital Hershey PA USA
- Department of Surgery and Bioengineering Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital Hershey PA USA
| |
Collapse
|
4
|
Wang S, Force M, Moroi MK, Patel S, Kunselman AR, Ündar A. Effects of Pulsatile Control Algorithms for Diagonal Pump on Hemodynamic Performance and Hemolysis. Artif Organs 2018; 43:60-75. [PMID: 30374991 DOI: 10.1111/aor.13284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/27/2018] [Accepted: 04/19/2018] [Indexed: 12/01/2022]
Abstract
The objective of this study is to compare hemodynamic performances under different pulsatile control algorithms between Medos DeltaStream DP3 and i-cor diagonal pumps in simulated pediatric and adult ECLS systems. An additional pilot study was designed to test hemolysis using two pumps during 12h-ECLS. The experimental circuit consisted of parallel combined pediatric and adult ECLS circuits using an i-cor pump head and either an i-cor console or Medos DeltaStream MDC console, a Medos Hilite 2400 LT oxygenator for the pediatric ECLS circuit, and a Medos Hilite 7000 LT oxygenator for the adult ECLS circuit. The circuit was primed with lactated Ringer's solution and human packed red blood cells (hematocrit 40%). Trials were conducted at various flow rates (pediatric circuit: 0.5 and 1L/min; adult circuit: 2 and 4L/min) under nonpulsatile and pulsatile modes (pulsatile amplitude: 1000-5000rpm [1000 rpm increments] for i-cor pump, 500-2500rpm [500 rpm increments] for Medos pump) at 36°C. In an additional protocol, fresh whole blood was used to test hemolysis under nonpulsatile and pulsatile modes using the two pump systems in adult ECLS circuits. Under pulsatile mode, energy equivalent pressures (EEP) were always greater than mean pressures for the two systems. Total hemodynamic energy (THE) and surplus hemodynamic energy (SHE) levels delivered to the patient increased with increasing pulsatile amplitude and decreased with increasing flow rate. The i-cor pump outperformed at low flow rates, but the Medos pump performed superiorly at high flow rates. There was no significant difference between two pumps in percentage of THE loss. The plasma free hemoglobin level was always higher in the Medos DP3 pulsatile group at 4 L/min compared to others. Pulsatile control algorithms of Medos and i-cor consoles had great effects on pulsatility. Although high pulsatile amplitudes delivered higher levels of hemodynamic energy to the patient, the high rotational speeds increased the risk of hemolysis. Use of proper pulsatile amplitude settings and intermittent pulsatile mode are suggested to achieve better pulsatility and decrease the risk of hemolysis. Further optimized pulsatile control algorithms are needed.
Collapse
Affiliation(s)
- Shigang Wang
- Penn State Hershey Pediatric Cardiovascular Research Center, Department of Pediatrics, Penn State Milton S. Hershey Medical Center, Penn State Hershey College of Medicine, Penn State Hershey Children's Hospital, Hershey, PA, USA
| | - Madison Force
- Penn State Hershey Pediatric Cardiovascular Research Center, Department of Pediatrics, Penn State Milton S. Hershey Medical Center, Penn State Hershey College of Medicine, Penn State Hershey Children's Hospital, Hershey, PA, USA
| | - Morgan K Moroi
- Penn State Hershey Pediatric Cardiovascular Research Center, Department of Pediatrics, Penn State Milton S. Hershey Medical Center, Penn State Hershey College of Medicine, Penn State Hershey Children's Hospital, Hershey, PA, USA
| | - Sunil Patel
- Penn State Hershey Pediatric Cardiovascular Research Center, Department of Pediatrics, Penn State Milton S. Hershey Medical Center, Penn State Hershey College of Medicine, Penn State Hershey Children's Hospital, Hershey, PA, USA
| | - Allen R Kunselman
- Department of Public Health and Sciences, Penn State Milton S. Hershey Medical Center, Penn State Hershey College of Medicine, Penn State Hershey Children's Hospital, Hershey, PA, USA
| | - Akif Ündar
- Penn State Hershey Pediatric Cardiovascular Research Center, Department of Pediatrics, Penn State Milton S. Hershey Medical Center, Penn State Hershey College of Medicine, Penn State Hershey Children's Hospital, Hershey, PA, USA.,Department of Surgery and Bioengineering, Penn State Milton S. Hershey Medical Center, Penn State Hershey College of Medicine, Penn State Hershey Children's Hospital, Hershey, PA, USA
| |
Collapse
|
5
|
Wang S, Moroi MK, Force M, Kunselman AR, Ündar A. Impact of Heart Rate on Pulsatile Hemodynamic Performance in a Neonatal ECG-Synchronized ECLS System. Artif Organs 2018; 43:81-89. [PMID: 30151915 DOI: 10.1111/aor.13273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The experimental circuit consisted of an i-cor diagonal pump, a Medos Hilite 800 LT oxygenator, an 8Fr Biomedicus arterial cannula, a 10Fr Biomedicus venous cannula, and six feet of 1/4 in ID tubing for arterial and venous lines. The circuit was primed with lactated Ringer's solution and packed red blood cells (hematocrit 40%). Trials were conducted at various heart rates (90, 120, and 150 bpm) and flow rates (200, 400, and 600mL/min) under nonpulsatile and pulsatile mode with pulsatile amplitudes of 1000-4000rpm (1000 rpm increments). Real-time pressure and flow data were recorded for analysis. The i-cor pump was capable of creating nonpulsatile and electrocardiography (ECG)-synchronized pulsatile flow, and automatically reducing pulsatile frequency by increasing the assist ratio at higher heart rates. Reduced pulsatile frequency led to lower hemodynamic energy generation but did not affect circuit pressure drop. Pulsatile flow delivered more hemodynamic energy to the pseudopatient when compared with nonpulsatile flow. The pump generated more hemodynamic energy with higher pulsatile amplitudes. The i-cor pump can automatically adjust the pulsatile assist ratio to create pulsatile flow at higher heart rates, although this caused some hemodynamic energy loss. Compared with nonpulsatile flow, pulsatile flow generated and transferred more hemodynamic energy to the neonate during ECLS (200-600mL/min), especially at high pulsatile amplitudes and low flow rates.
Collapse
Affiliation(s)
- Shigang Wang
- Penn State Health Pediatric Cardiovascular Research Center, Department of Pediatrics, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA, USA
| | - Morgan K Moroi
- Penn State Health Pediatric Cardiovascular Research Center, Department of Pediatrics, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA, USA
| | - Madison Force
- Penn State Health Pediatric Cardiovascular Research Center, Department of Pediatrics, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA, USA
| | - Allen R Kunselman
- Health and Sciences, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA, USA
| | - Akif Ündar
- Penn State Health Pediatric Cardiovascular Research Center, Department of Pediatrics, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA, USA.,Department of Surgery and Bioengineering, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA, USA
| |
Collapse
|
6
|
Wang S, Moroi M, Brehm CE, Kunselman AR, Ündar A. In Vitro Hemodynamic Evaluation of an Adult Pulsatile Extracorporeal Membrane Oxygenation System. Artif Organs 2018; 42:E234-E245. [PMID: 29774551 DOI: 10.1111/aor.13156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 01/02/2023]
Abstract
The objective of this study was to evaluate a pulsatile extracorporeal membrane oxygenation (ECMO) system in terms of hemodynamic energy generation and transmission under various pulsatile amplitudes, flow rates, and pseudopatient pressures in a simulated adult ECMO circuit. Surplus hemodynamic energy (SHE), a measure of the quality of pulsatility, was used to quantify pulsatile flow. The circuit consisted of an i-cor diagonal pump, an adult XLung oxygenator, a 21 Fr Medtronic Biomedicus femoral arterial cannula, a 23/25 Fr Sorin RAP femoral venous cannula, and 3/8 in ID tubing for both arterial and venous lines. The circuit was primed with lactated Ringer's solution and then packed red blood cells (hematocrit 37%). Trials were conducted at 36°C with flow rates of 2-5 L/min (1 L/min increments) under nonpulsatile and pulsatile mode with pulsatile amplitudes of 1000-5000 rpm (1000 rpm increments). The pseudopatient pressure was maintained at 40-100 mm Hg (20 mm Hg increments). Real-time pressure and flow data were recorded for analysis using a custom-made data acquisition system. There was no SHE generated by the pump under nonpulsatile mode. Under pulsatile mode, SHE levels increased with increasing pulsatile amplitude and pseudopatient pressure (P < 0.01) but decreased with increasing flow rate. SHE levels were significantly higher at flow rates of 2-4 L/min. In addition, the XLung oxygenator had acceptable pressure drops (36.1-104.9 mm Hg) and percentages of total hemodynamic energy loss (19.6-43.9%) during all trials. The novel pulsatile ECMO system can create nonpulsatile and pulsatile flow in an adult ECMO model. However, pulsatility gradually weakened with increasing flow rates. Pulsatile amplitude settings were found to have a great impact on pulsatility.
Collapse
Affiliation(s)
- Shigang Wang
- Department of Pediatrics, Penn State Health Pediatric Cardiovascular Research Center, Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA, USA
| | - Morgan Moroi
- Department of Pediatrics, Penn State Health Pediatric Cardiovascular Research Center, Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA, USA
| | - Christoph E Brehm
- Heart and Vascular Institute Critical Care Unit and Adult ECMO Program, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA, USA
| | - Allen R Kunselman
- Department of Public Health and Sciences, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA, USA
| | - Akif Ündar
- Department of Pediatrics, Penn State Health Pediatric Cardiovascular Research Center, Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA, USA.,Department of Surgery and Bioengineering, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA, USA
| |
Collapse
|
7
|
Ündar A, Wang S, Moroi M, Kunselman AR, Brehm CE. Evaluation and Comparison of Hemodynamic Performance of Three ECLS Systems in a Simulated Adult Cardiogenic Shock Model. Artif Organs 2018; 42:776-785. [DOI: 10.1111/aor.13126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Akif Ündar
- Department of Pediatrics; Penn State Health Pediatric Cardiovascular Research Center, Penn State College of Medicine, Penn State Health Children's Hospital; Hershey PA USA
- Department of Surgery and Bioengineering; Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital; Hershey PA USA
| | - Shigang Wang
- Department of Pediatrics; Penn State Health Pediatric Cardiovascular Research Center, Penn State College of Medicine, Penn State Health Children's Hospital; Hershey PA USA
| | - Morgan Moroi
- Department of Pediatrics; Penn State Health Pediatric Cardiovascular Research Center, Penn State College of Medicine, Penn State Health Children's Hospital; Hershey PA USA
| | - Allen R. Kunselman
- Department of Public Health and Sciences; Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital; Hershey PA USA
| | - Christoph E. Brehm
- Heart & Vascular Intensive Care Unit, Penn State Milton S. Hershey Medical Center; Penn State College of Medicine, Penn State Health Children's Hospital; Hershey PA USA
| |
Collapse
|
8
|
Abstract
In this Editor's Review, articles published in 2017 are organized by category and summarized. We provide a brief reflection of the research and progress in artificial organs intended to advance and better human life while providing insight for continued application of these technologies and methods. Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level." Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ Replacement, Recovery, and Regeneration from all over the world. Peer-reviewed Special Issues this year included contributions from the 12th International Conference on Pediatric Mechanical Circulatory Support Systems and Pediatric Cardiopulmonary Perfusion edited by Dr. Akif Undar, Artificial Oxygen Carriers edited by Drs. Akira Kawaguchi and Jan Simoni, the 24th Congress of the International Society for Mechanical Circulatory Support edited by Dr. Toru Masuzawa, Challenges in the Field of Biomedical Devices: A Multidisciplinary Perspective edited by Dr. Vincenzo Piemonte and colleagues and Functional Electrical Stimulation edited by Dr. Winfried Mayr and colleagues. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide meaningful suggestions to the author's work whether eventually accepted or rejected. Without these excellent and dedicated reviewers the quality expected from such a journal could not be possible. We also express our special thanks to our Publisher, John Wiley & Sons for their expert attention and support in the production and marketing of Artificial Organs. We look forward to reporting further advances in the coming years.
Collapse
|