1
|
Li XF, Shen GZ, Gong PF, Yang Y, Tuerxun P. Mechanisms of action of the proline hydroxylase-adenosine pathway in regulating apoptosis and reducing myocardial ischemia-reperfusion injury. Clin Hemorheol Microcirc 2025:13860291241310148. [PMID: 39973430 DOI: 10.1177/13860291241310148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Objective: The aim of this study is to explore the protective mechanism of proline hydroxylase (PHD) in reducing myocardial ischemia-reperfusion injury (MIRI) through the hypoxia-inducible factor (HIF)-1α-adenosine-MAPK/ERK signaling pathway, with the goal of identifying potential drug targets and therapeutic strategies for the clinical management of MIRI. Methods: A rat model of MIRI was established using 45 male Sprague-Dawley (SD) rats, which were randomly divided into the following three groups: sham operation (n = 15), MIRI model (n = 15), and MIRI + FG-4592 preconditioning (n = 15) groups. Cardiac function was assessed by echocardiographic measurements of the left ventricular end-diastolic diameter (LVIDd), left ventricular contractile diameter (LVIDs), left ventricular shortening fraction (FS), and left ventricular ejection fraction (EF). Cardiomyocyte apoptosis was evaluated using hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Myocardial infarct size was determined with 23,5-triphenyltetrazolium chloride (TTC) staining, while levels of inflammatory factors such as interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were quantified using enzyme-linked immunosorbent assays (ELISA). Western blot (WB) analysis was performed to assess the expression of apoptotic proteins ERK1/2, phosphorylated-ERK1/2 (p-ERK1/2), AKT, phosphorylated-AKT (p-AKT), caspase-3, BCL-2, and BAX in the infarct boundary area. Adenosine levels within myocardial tissue were also measured. Results: FG-4592 preconditioning significantly improved cardiac function, lowered cardiomyocyte apoptosis and myocardial infarction size, reduced myocardial tissue damage, and inhibited inflammation. Additionally, FG-4592 increased the expression of anti-apoptotic proteins and enhanced adenosine levels in myocardial tissue in the treatment group compared with the MIRI model group. Conclusions: Inhibition of HIF-1α degradation plays a significant role in enhancing extracellular adenosine levels and reducing MIRI, possibly regulating apoptosis through the MAPK/ERK signaling pathway. These findings highlight the potential of targeting the PHD-HIF-adenosine axis in developing treatment strategies for MIRI, meriting future exploration.
Collapse
Affiliation(s)
- Xiu-Fen Li
- Department of Cardiology, Xinjiang Medical University Affiliated Traditional Chinese Medicine Hospital, Urumqi, China
| | - Gu-Zhuo Shen
- Department of Cardiology, The Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, China
| | - Peng-Fei Gong
- Department of Cardiology, Xinjiang Medical University Affiliated Traditional Chinese Medicine Hospital, Urumqi, China
| | - Yan Yang
- Department of Cardiology, Xinjiang Medical University Affiliated Traditional Chinese Medicine Hospital, Urumqi, China
| | - Paerhati Tuerxun
- Department of Cardiology, Xinjiang Medical University Affiliated Traditional Chinese Medicine Hospital, Urumqi, China
| |
Collapse
|
2
|
Abbas SH, Ceresa CDL, Pollok JM. Steatotic Donor Transplant Livers: Preservation Strategies to Mitigate against Ischaemia-Reperfusion Injury. Int J Mol Sci 2024; 25:4648. [PMID: 38731866 PMCID: PMC11083584 DOI: 10.3390/ijms25094648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Liver transplantation (LT) is the only definitive treatment for end-stage liver disease, yet the UK has seen a 400% increase in liver disease-related deaths since 1970, constrained further by a critical shortage of donor organs. This shortfall has necessitated the use of extended criteria donor organs, including those with evidence of steatosis. The impact of hepatic steatosis (HS) on graft viability remains a concern, particularly for donor livers with moderate to severe steatosis which are highly sensitive to the process of ischaemia-reperfusion injury (IRI) and static cold storage (SCS) leading to poor post-transplantation outcomes. This review explores the pathophysiological predisposition of steatotic livers to IRI, the limitations of SCS, and alternative preservation strategies, including novel organ preservation solutions (OPS) and normothermic machine perfusion (NMP), to mitigate IRI and improve outcomes for steatotic donor livers. By addressing these challenges, the liver transplant community can enhance the utilisation of steatotic donor livers which is crucial in the context of the global obesity crisis and the growing need to expand the donor pool.
Collapse
Affiliation(s)
- Syed Hussain Abbas
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, UK;
| | - Carlo Domenico Lorenzo Ceresa
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
| | - Joerg-Matthias Pollok
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
- Division of Surgery & Interventional Science, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
3
|
Miao M, Wu M, Li Y, Zhang L, Jin Q, Fan J, Xu X, Gu R, Hao H, Zhang A, Jia Z. Clinical Potential of Hypoxia Inducible Factors Prolyl Hydroxylase Inhibitors in Treating Nonanemic Diseases. Front Pharmacol 2022; 13:837249. [PMID: 35281917 PMCID: PMC8908211 DOI: 10.3389/fphar.2022.837249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
Hypoxia inducible factors (HIFs) and their regulatory hydroxylases the prolyl hydroxylase domain enzymes (PHDs) are the key mediators of the cellular response to hypoxia. HIFs are normally hydroxylated by PHDs and degraded, while under hypoxia, PHDs are suppressed, allowing HIF-α to accumulate and transactivate multiple target genes, including erythropoiesis, and genes participate in angiogenesis, iron metabolism, glycolysis, glucose transport, cell proliferation, survival, and so on. Aiming at stimulating HIFs, a group of small molecules antagonizing HIF-PHDs have been developed. Of these HIF-PHDs inhibitors (HIF-PHIs), roxadustat (FG-4592), daprodustat (GSK-1278863), vadadustat (AKB-6548), molidustat (BAY 85-3934) and enarodustat (JTZ-951) are approved for clinical usage or have progressed into clinical trials for chronic kidney disease (CKD) anemia treatment, based on their activation effect on erythropoiesis and iron metabolism. Since HIFs are involved in many physiological and pathological conditions, efforts have been made to extend the potential usage of HIF-PHIs beyond anemia. This paper reviewed the progress of preclinical and clinical research on clinically available HIF-PHIs in pathological conditions other than CKD anemia.
Collapse
Affiliation(s)
- Mengqiu Miao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yuting Li
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Lingge Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Qianqian Jin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiaojiao Fan
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Xinyue Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Ran Gu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Cienfuegos-Pecina E, Moreno-Peña DP, Torres-González L, Rodríguez-Rodríguez DR, Garza-Villarreal D, Mendoza-Hernández OH, Flores-Cantú RA, Samaniego Sáenz BA, Alarcon-Galvan G, Muñoz-Espinosa LE, Ibarra-Rivera TR, Saucedo AL, Cordero-Pérez P. Treatment with sodium ( S)-2-hydroxyglutarate prevents liver injury in an ischemia-reperfusion model in female Wistar rats. PeerJ 2021; 9:e12426. [PMID: 34824916 PMCID: PMC8592047 DOI: 10.7717/peerj.12426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background Ischemia-reperfusion (IR) injury is one of the leading causes of early graft dysfunction in liver transplantation. Techniques such as ischemic preconditioning protect the graft through the activation of the hypoxia-inducible factors (HIF), which are downregulated by the EGLN family of prolyl-4-hydroxylases, a potential biological target for the development of strategies based on pharmacological preconditioning. For that reason, this study aims to evaluate the effect of the EGLN inhibitor sodium (S)-2-hydroxyglutarate [(S)-2HG] on liver IR injury in Wistar rats. Methods Twenty-eight female Wistar rats were divided into the following groups: sham (SH, n = 7), non-toxicity (HGTox, n = 7, 25 mg/kg of (S)-2HG, twice per day for two days), IR (n = 7, total liver ischemia: 20 minutes, reperfusion: 60 minutes), and (S)-2HG+IR (HGIR, n = 7, 25 mg/kg of (S)-2HG, twice per day for two days, total liver ischemia as the IR group). Serum ALT, AST, LDH, ALP, glucose, and total bilirubin were assessed. The concentrations of IL-1β, IL-6, TNF, malondialdehyde, superoxide dismutase, and glutathione peroxidase were measured in liver tissue, as well as the expression of Hmox1, Vegfa, and Pdk1, determined by RT-qPCR. Sections of liver tissue were evaluated histologically, assessing the severity of necrosis, sinusoidal congestion, and cytoplasmatic vacuolization. Results The administration of (S)-2HG did not cause any alteration in the assessed biochemical markers compared to SH. Preconditioning with (S)-2HG significantly ameliorated IR injury in the HGIR group, decreasing the serum activities of ALT, AST, and LDH, and the tissue concentrations of IL-1β and IL-6 compared to the IR group. IR injury decreased serum glucose compared to SH. There were no differences in the other biomarkers assessed. The treatment with (S)-2HG tended to decrease the severity of hepatocyte necrosis and sinusoidal congestion compared to the IR group. The administration of (S)-2HG did not affect the expression of Hmox1 but decreased the expression of both Vegfa and Pdk1 compared to the SH group, suggesting that the HIF-1 pathway is not involved in its mechanism of hepatoprotection. In conclusion, (S)-2HG showed a hepatoprotective effect, decreasing the levels of liver injury and inflammation biomarkers, without evidence of the involvement of the HIF-1 pathway. No hepatotoxic effect was observed at the tested dose.
Collapse
Affiliation(s)
- Eduardo Cienfuegos-Pecina
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico.,Universidad Autónoma de Nuevo León. Blood Bank, Department of Clinical Pathology, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Diana P Moreno-Peña
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Liliana Torres-González
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Diana Raquel Rodríguez-Rodríguez
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Diana Garza-Villarreal
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Oscar H Mendoza-Hernández
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Raul Alejandro Flores-Cantú
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Brenda Alejandra Samaniego Sáenz
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Gabriela Alarcon-Galvan
- Universidad de Monterrey, Basic Science Department, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Linda E Muñoz-Espinosa
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Tannya R Ibarra-Rivera
- Universidad Autónoma de Nuevo León. Department of Analytical Chemistry, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Alma L Saucedo
- Universidad Autónoma de Nuevo León. Department of Analytical Chemistry, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Paula Cordero-Pérez
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| |
Collapse
|
5
|
Iesari S, Leclercq I, Joudiou N, Komuta M, Daumerie A, Ambroise J, Dili A, Feza-Bingi N, Xhema D, Bouzin C, Gallez B, Pisani F, Bonaccorsi-Riani E, Gianello P. Selective HIF stabilization alleviates hepatocellular steatosis and ballooning in a rodent model of 70% liver resection. Clin Sci (Lond) 2021; 135:2285-2305. [PMID: 34550341 DOI: 10.1042/cs20210183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Small-for-size syndrome (SFSS) looms over patients needing liver resection or living-donor transplantation. Hypoxia has been shown to be crucial for the successful outcome of liver resection in the very early postoperative phase. While poorly acceptable as such in real-world clinical practice, hypoxia responses can still be simulated by pharmacologically raising levels of its transducers, the hypoxia-inducible factors (HIFs). We aimed to assess the potential role of a selective inhibitor of HIF degradation in 70% hepatectomy (70%Hx). METHODS In a pilot study, we tested the required dose of roxadustat to stabilize liver HIF1α. We then performed 70%Hx in 8-week-old male Lewis rats and administered 25 mg/kg of roxadustat (RXD25) at the end of the procedure. Regeneration was assessed: ki67 and 5-ethynyl-2'-deoxyuridine (EdU) immunofluorescent labeling, and histological parameters. We also assessed liver function via a blood panel and functional gadoxetate-enhanced magnetic resonance imaging (MRI), up to 47 h after the procedure. Metabolic results were analyzed by means of RNA sequencing (RNAseq). RESULTS Roxadustat effectively increased early HIF1α transactivity. Liver function did not appear to be improved nor liver regeneration to be accelerated by the experimental compound. However, treated livers showed a mitigation in hepatocellular steatosis and ballooning, known markers of cellular stress after liver resection. RNAseq confirmed that roxadustat unexpectedly increases lipid breakdown and cellular respiration. CONCLUSIONS Selective HIF stabilization did not result in an enhanced liver function after standard liver resection, but it induced interesting metabolic changes that are worth studying for their possible role in extended liver resections and fatty liver diseases.
Collapse
Affiliation(s)
- Samuele Iesari
- Pôle de Chirurgie Expérimentale et Transplantation, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Liver Transplantation, Service de Chirurgie Générale et Transplantation Abdominale, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Nicolas Joudiou
- Nuclear and Electron Spin Technologies, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Mina Komuta
- Department of Pathology, Keio University, Tokyo, Japan
| | - Aurélie Daumerie
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Jérôme Ambroise
- Centre for Applied Molecular Technologies, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Alexandra Dili
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Natacha Feza-Bingi
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Daela Xhema
- Pôle de Chirurgie Expérimentale et Transplantation, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Nuclear and Electron Spin Technologies, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Francesco Pisani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eliano Bonaccorsi-Riani
- Pôle de Chirurgie Expérimentale et Transplantation, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Liver Transplantation, Service de Chirurgie Générale et Transplantation Abdominale, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Gianello
- Pôle de Chirurgie Expérimentale et Transplantation, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Zhang X, Du P, Luo K, Li Y, Liu Z, Wang W, Zeng C, Ye Q, Xiao Q. Hypoxia-inducible factor-1alpha protects the liver against ischemia-reperfusion injury by regulating the A2B adenosine receptor. Bioengineered 2021; 12:3737-3752. [PMID: 34288817 PMCID: PMC8806673 DOI: 10.1080/21655979.2021.1953217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) is an inevitable complication associated with liver surgical procedures, and its pathological process remains elusive. Therefore, the present study investigated the role and mechanism of hypoxia-inducible factor-1alpha (HIF-1α) in hepatic IRI. Here, we constructed rat models with hepatic IRI and BRL-3A cell models with hypoxia/reoxygenation (H/R) insult. The extent of liver injury was assayed by measuring serum ALT/AST levels and performing H&E staining; the levels of SOD, MDA, MPO, IL-6 and TNF-α were determined using commercial kits; apoptosis was detected using the TUNEL assay and flow cytometry; and the expression of HIF-1α/A2BAR signaling-related molecules and apoptosis-associated indicators was detected using Western blotting or qRT-PCR. The expression level of HIF-1α was significantly upregulated in the liver of rats subjected to IRI, as well as in BRL-3A cells treated with H/R. HIF-1α overexpression exerted a protective effect on hepatic IRI or H/R insult by reducing serum aminotransferase levels and hepatic necrosis, inhibiting inflammation and apoptosis of hepatocytes, and alleviating oxidative stress. In contrast, inhibition of HIF-1α expression exacerbated hepatic injury induced by IR or H/R. Mechanistically, the expression level of A2BAR was markedly increased during hepatic IRI or H/R insult. Moreover, A2BAR expression increased with HIF-1α upregulation and decreased with HIF-1α downregulation. Importantly, inhibition of A2BAR signaling abolished HIF-1α overexpression-mediated hepatoprotection. Taken together, HIF-1α exerts protective effects on hepatic IRI by attenuating liver necrosis, the inflammatory response, oxidative stress and apoptosis, and its mechanism may be related to the upregulation of A2BAR signaling.
Collapse
Affiliation(s)
- Xingjian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Du
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kaifeng Luo
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yong Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhongzhong Liu
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Wei Wang
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Cheng Zeng
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Qifa Ye
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Qi Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Boteon Y, Flores Carvalho MA, Panconesi R, Muiesan P, Schlegel A. Preventing Tumour Recurrence after Liver Transplantation: The Role of Machine Perfusion. Int J Mol Sci 2020; 21:E5791. [PMID: 32806712 PMCID: PMC7460879 DOI: 10.3390/ijms21165791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Tumour recurrence is currently a hot topic in liver transplantation. The basic mechanisms are increasingly discussed, and, for example, recurrence of hepatocellular carcinoma is often described in pre-injured donor livers, which frequently suffer from significant ischemia/reperfusion injury. This review article highlights the underlying mechanisms and describes the specific tissue milieu required to promote tumour recurrence after liver transplantation. We summarise the current literature in this field and show risk factors that contribute to a pro-tumour-recurrent environment. Finally, the potential role of new machine perfusion technology is discussed, including the most recent data, which demonstrate a protective effect of hypothermic oxygenated perfusion before liver transplantation.
Collapse
Affiliation(s)
- Yuri Boteon
- Liver Unit, Albert Einstein Hospital, 05652–900 São Paulo, Brazil;
- Albert Einstein Jewish Institute for Education and Research, 05652–900 São Paulo, Brazil
| | - Mauricio Alfredo Flores Carvalho
- Hepatobiliary Unit, Department of Clinical and Experimental Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy; (M.A.F.C.); (R.P.); (P.M.)
| | - Rebecca Panconesi
- Hepatobiliary Unit, Department of Clinical and Experimental Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy; (M.A.F.C.); (R.P.); (P.M.)
| | - Paolo Muiesan
- Hepatobiliary Unit, Department of Clinical and Experimental Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy; (M.A.F.C.); (R.P.); (P.M.)
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2TH, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham B15 2TT, UK
| | - Andrea Schlegel
- Hepatobiliary Unit, Department of Clinical and Experimental Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy; (M.A.F.C.); (R.P.); (P.M.)
| |
Collapse
|
8
|
Deguchi H, Ikeda M, Ide T, Tadokoro T, Ikeda S, Okabe K, Ishikita A, Saku K, Matsushima S, Tsutsui H. Roxadustat Markedly Reduces Myocardial Ischemia Reperfusion Injury in Mice. Circ J 2020; 84:1028-1033. [PMID: 32213720 DOI: 10.1253/circj.cj-19-1039] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Ischemic preconditioning (IPC) is an effective procedure to protect against ischemia/reperfusion (I/R) injury. Hypoxia-inducible factor-1α (Hif-1α) is a key molecule in IPC, and roxadustat (RXD), a first-in-class prolyl hydroxylase domain-containing protein inhibitor, has been recently developed to treat anemia in patients with chronic kidney disease. Thus, we investigated whether RXD pretreatment protects against I/R injury. METHODS AND RESULTS RXD pretreatment markedly reduced the infarct size and suppressed plasma creatinine kinase activity in a murine I/R model. Analysis of oxygen metabolism showed that RXD could produce ischemic tolerance by shifting metabolism from aerobic to anaerobic respiration. CONCLUSIONS RXD pretreatment may be a novel strategy against I/R injury.
Collapse
Affiliation(s)
- Hiroko Deguchi
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | - Tomomi Ide
- Department of Experimental and Clinical Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | - Tomonori Tadokoro
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | - Soichiro Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | - Kosuke Okabe
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | - Akihito Ishikita
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | - Keita Saku
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | | | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| |
Collapse
|
9
|
Chang WT, Lo YC, Gao ZH, Wu SN. Evidence for the Capability of Roxadustat (FG-4592), an Oral HIF Prolyl-Hydroxylase Inhibitor, to Perturb Membrane Ionic Currents: An Unidentified yet Important Action. Int J Mol Sci 2019; 20:ijms20236027. [PMID: 31795416 PMCID: PMC6928729 DOI: 10.3390/ijms20236027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Roxadustat (FG-4592), an analog of 2-oxoglutarate, is an orally-administered, heterocyclic small molecule known to be an inhibitor of hypoxia inducible factor (HIF) prolyl hydroxylase. However, none of the studies have thus far thoroughly investigated its possible perturbations on membrane ion currents in endocrine or heart cells. In our studies, the whole-cell current recordings of the patch-clamp technique showed that the presence of roxadustat effectively and differentially suppressed the peak and late components of IK(DR) amplitude in response to membrane depolarization in pituitary tumor (GH3) cells with an IC50 value of 5.71 and 1.32 μM, respectively. The current inactivation of IK(DR) elicited by 10-sec membrane depolarization became raised in the presence of roxadustatt. When cells were exposed to either CoCl2 or deferoxamine (DFO), the IK(DR) elicited by membrane depolarization was not modified; however, nonactin, a K+-selective ionophore, in continued presence of roxadustat, attenuated roxadustat-mediated inhibition of the amplitude. The steady-state inactivation of IK(DR) could be constructed in the presence of roxadustat. Recovery of IK(DR) block by roxadustat (3 and 10 μM) could be fitted by a single exponential with 382 and 523 msec, respectively. The roxadustat addition slightly suppressed erg-mediated K+ or hyperpolarization-activated cation currents. This drug also decreased the peak amplitude of voltage-gated Na+ current with a slowing in inactivation rate of the current. Likewise, in H9c2 heart-derived cells, the addition of roxadustat suppressed IK(DR) amplitude in combination with the shortening in inactivation time course of the current. In high glucose-treated H9c2 cells, roxadustat-mediated inhibition of IK(DR) remained unchanged. Collectively, despite its suppression of HIF prolyl hydroxylase, inhibitory actions of roxadustat on different types of ionic currents possibly in a non-genomic fashion might provide another yet unidentified mechanism through which cellular functions are seriously perturbed, if similar findings occur in vivo.
Collapse
Affiliation(s)
- Wei-Ting Chang
- Division of Cardiovascular Medicine, Chi-Mei Medical Center, Tainan 71004 Taiwan;
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 71004, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Zi-Han Gao
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan;
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan;
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Department of Basic Medical Sciences, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-6-2353535-5334/886-6-2362780
| |
Collapse
|
10
|
Intrabody against prolyl hydroxylase 2 promotes angiogenesis by stabilizing hypoxia-inducible factor-1α. Sci Rep 2019; 9:11861. [PMID: 31413262 PMCID: PMC6694103 DOI: 10.1038/s41598-019-47891-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factor (HIF)-1α is a crucial transcription factor that regulates the expression of target genes involved in angiogenesis. Prolyl hydroxylase 2 (PHD2) dominantly hydroxylates two highly conserved proline residues of HIF-1α to promote its degradation. This study was designed to construct an intrabody against PHD2 that can inhibit PHD2 activity and promote angiogenesis. Single-chain variable fragment (scFv) against PHD2, INP, was isolated by phage display technique and was modified with an endoplasmic reticulum (ER) sequence to obtain ER-retained intrabody against PHD2 (ER-INP). ER-INP was efficiently expressed and bound to PHD2 in cells, significantly increased the levels of HIF-1α, and decreased hydroxylated HIF-1α in human embryonic kidney cell line (HEK293) cells and mouse mononuclear macrophage leukaemia cell line (RAW264.7) cells. ER-INP has shown distinct angiogenic activity both in vitro and in vivo, as ER-INP expression significantly promoted the migration and tube formation of human umbilical vein endothelial cells (HUVECs) and enhanced angiogenesis of chick chorioallantoic membranes (CAMs). Furthermore, ER-INP promoted distinct expression and secretion of a range of angiogenic factors. To the best of our knowledge, this is the first study to report an ER-INP intrabody enhancing angiogenesis by blocking PHD2 activity to increase HIF-1α abundance and activity. These results indicate that ER-INP may play a role in the clinical treatment of tissue injury and ischemic diseases in the future.
Collapse
|
11
|
Zeng X, Wang S, Li S, Yang Y, Fang Z, Huang H, Wang Y, Fan X, Ye Q. Hypothermic oxygenated machine perfusion alleviates liver injury in donation after circulatory death through activating autophagy in mice. Artif Organs 2019; 43:E320-E332. [PMID: 31237688 DOI: 10.1111/aor.13525] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
Hypothermic oxygenated machine perfusion (HOPE) is a safe and reliable method that could alleviate liver injury in donation after circulatory death (DCD). This study focuses on the role of autophagy in HOPE's protective effect on DCD liver injury. A 30-minute warm ischemic liver model was established in mice. After 4 hours of cold storage (CS), 1 hour of hypothermic machine perfusion (HMP) with 100% O2 or 100% N2 was employed. During 2 hours of reperfusion, liver tissue and perfusate were collected to evaluate liver function, oxidative stress level, apoptosis, and necrosis. Western blotting was used to explore the level of autophagy. When the liver experienced warm ischemic injury, LC3B-II expression was significantly enhanced. Compared with the CS, HOPE induced lower release of AST and ALT, as well as lower oxidative stress levels, apoptosis, and necrosis cell numbers, and led to higher tissue ATP content. Meanwhile, expression of autophagy-related proteins, such as ULK1, Atg5, and LC3B-II, increased. When oxygen was completely replaced by nitrogen, the washout effect of HMP did not activate autophagy and did not relieve DCD liver injury. When the autophagy inhibitor 3-methyladenine was used in HOPE, the protective effect of HOPE was attenuated. In conclusion, DCD liver injury activated autophagy compared with healthy liver, while HOPE alleviated DCD liver injury by increasing autophagy levels further in this mouse model. However, HMP with 100% of N2 had no beneficial effect on DCD liver injury or on autophagy levels compared with CS. The research on autophagy may provide a new strategy for alleviating DCD liver injury in clinical practice.
Collapse
Affiliation(s)
- Xianpeng Zeng
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Shengjie Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Shiyi Li
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Yunying Yang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Zehong Fang
- The Third General Surgery Department of Jiangxi Provincial People's Hospital, Organ Transplant Department of Jiangxi Provincial People's Hospital, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Honglei Huang
- Nuffield Department of Surgical Sciences, Oxford University, Oxford, United Kingdom
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Xiaoli Fan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China.,Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, The 3rd Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
12
|
Wang NN, Chen GN, Qu B, Yu F, Sheng GN, Shi Y. Effect of Hypotensive Brain Death on the Donor Liver and Its Mechanism in an Improved Bama Miniature Pig (Sus scrofa domestica) Model. Transplant Proc 2019; 51:951-959. [PMID: 30979488 DOI: 10.1016/j.transproceed.2019.01.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 01/04/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND We aimed to observe the effect of hypotensive brain death on the donor liver and understand its pathophysiological mechanism in improved pig model. METHODS The model was induced using the modified intracranial water sac inflation method in 16 Bama miniature pigs. Effects of hypotensive brain death on liver function and tissue morphology were evaluated via changes in liver function enzyme index, liver tissue alkaline phosphatase levels, hourly bile flow, and liver tissue pathology. Its pathophysiological mechanism was examined on the basis of changes in portal vein blood flow, hepatic artery blood flow, portal venous endotoxin level, and liver tissue cytokine levels. RESULTS After model establishment, portal vein blood flow, hepatic arterial blood flow, hourly bile flow, and alkaline phosphatase content in hepatic tissue significantly decreased, and serum aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase levels significantly increased. Hematoxylin-eosin staining of liver tissue showed that after model establishment, hepatic tissue injury was gradually aggravated and hepatic cells were irreversibly damaged at 7 hours. Portal vein endotoxin levels significantly increased after brain death. Tumor necrosis factor α, interleukin 1, and endothelin 1 levels in liver tissues significantly increased at 3, 6, and 12 hours after brain death (P < .05), and hypoxia-inducible factor 1-α and nitric oxide levels significantly decreased (P < .05). CONCLUSIONS Hepatic injury was progressively aggravated under hypotensive brain death. The mechanism of donor liver injury under hypotensive brain death may involve low liver perfusion, release of intestinal endotoxin and inflammatory factors (eg, tumor necrosis factor α and interleukin 1), decreased hypoxia-inducible factor 1-α, and endothelin 1 and nitric oxide imbalance.
Collapse
Affiliation(s)
- N-N Wang
- Postgraduate Training Base, Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Jinzhou Medical University, Tianjin, China
| | - G-N Chen
- Postgraduate Training Base, Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Jinzhou Medical University, Tianjin, China
| | - B Qu
- Postgraduate Training Base, Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Jinzhou Medical University, Tianjin, China.
| | - F Yu
- Department of Emergency, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - G-N Sheng
- Organ Transplantation Center, Tianjin First Center Hospital, Nankai District, Tianjin, China
| | - Y Shi
- Organ Transplantation Center, Tianjin First Center Hospital, Nankai District, Tianjin, China.
| |
Collapse
|
13
|
Malchesky PS. Artificial Organs 2018: A Year in Review. Artif Organs 2019; 43:288-317. [PMID: 30680758 DOI: 10.1111/aor.13428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/24/2022]
Abstract
In this Editor's Review, articles published in 2018 are organized by category and summarized. We provide a brief reflection of the research and progress in artificial organs intended to advance and better human life while providing insight for continued application of these technologies and methods. Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level." Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ Replacement, Recovery, and Regeneration from all over the world. Peer-reviewed special issues this year included contributions from the 13th International Conference on Pediatric Mechanical Circulatory Support Systems and Pediatric Cardiopulmonary Perfusion edited by Dr. Akif Undar, and the 25th Congress of the International Society for Mechanical Circulatory Support edited by Dr. Marvin Slepian. Additionally, many editorials highlighted the worldwide survival differences in hemodialysis and perspectives on mechanical circulatory support and stem cell therapies for cardiac support. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide meaningful suggestions to the author's work whether eventually accepted or rejected. Without these excellent and dedicated reviewers the quality expected from such a journal could not be possible. We also express our special thanks to our Publisher, John Wiley & Sons for their expert attention and support in the production and marketing of Artificial Organs. We look forward to reporting further advances in the coming years.
Collapse
|
14
|
He W, Ye S, Zeng C, Xue S, Hu X, Zhang X, Gao S, Xiong Y, He X, Vivalda S, Li L, Wang Y, Ye Q. Hypothermic oxygenated perfusion (HOPE) attenuates ischemia/reperfusion injury in the liver through inhibition of the TXNIP/NLRP3 inflammasome pathway in a rat model of donation after cardiac death. FASEB J 2018; 32:fj201800028RR. [PMID: 29870680 DOI: 10.1096/fj.201800028rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hypothermic oxygenated perfusion (HOPE) is a relatively new dynamic preservation procedure that has not been widely implemented in liver transplantation despite its advantages. Improved graft protection is one such advantage offered by HOPE and has been attributed to multiple mechanisms, one of which may be the modulation of the thioredoxin-interacting protein (TXNIP)/NOD-like receptor protein 3 (NLRP3) inflammasome pathway. The TXNIP/NLRP3 inflammasome pathway plays a critical role in sterile inflammation under oxidative stress as a result of ischemia/reperfusion injury (IRI). In the current study, we aimed to investigate the graft protection offered by HOPE and its impact on the TXNIP/NLRP3 inflammasome pathway. To simulate conditions of donation after cardiac death (DCD) liver transplantation, rat livers were exposed to 30 min of warm ischemia after cardiac arrest. Livers were then preserved under cold storage (CS) or with HOPE for 3 h. Livers were then subjected to 1 h of isolated reperfusion. Liver injuries were assessed on the isolated perfusion rat liver model system before and after reperfusion. Compared with the CS group, the HOPE group had a significant reduction in liver injury and improvement in liver function. Our findings also revealed that reperfusion injury induced liver damage and activated the TXNIP/NLRP3 inflammasome pathway in DCD rat livers. Pretreatment of DCD rat livers with HOPE inhibited the TXNIP/NLRP3 inflammasome pathway and attenuated liver IRI. Attenuation of oxidative stress as a result of HOPE led to the down-regulation of the TXNIP/NLRP3 inflammasome pathway and thus offered superior protection compared with the traditional CS method of organ preservation.-He, W., Ye, S., Zeng, C., Xue, S., Hu, X., Zhang, X., Gao, S., Xiong, Y., He, X., Vivalda, S., Li, L., Wang, Y., Ye, Q. Hypothermic oxygenated perfusion (HOPE) attenuates ischemia/reperfusion injury in the liver through inhibition of the TXNIP/NLRP3 inflammasome pathway in a rat model of donation after cardiac death.
Collapse
Affiliation(s)
- Weiyang He
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Shaojun Ye
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Cheng Zeng
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Shuai Xue
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiaoyan Hu
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xingjian Zhang
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Siqi Gao
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yan Xiong
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xueyu He
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Soatina Vivalda
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Ling Li
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yanfeng Wang
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Qifa Ye
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
- Transplantation Medicine Engineering and Technology Research Center, National Health Commission, The 3rd Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|