1
|
Onder A, Incebay O, Yapici R. Computational fluid dynamics simulating of the FDA benchmark blood pump with different coefficient sets and scaler shear stress models used in the power-law hemolysis model. J Artif Organs 2024:10.1007/s10047-024-01468-6. [PMID: 39177925 DOI: 10.1007/s10047-024-01468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Hemolysis is the most important issue to consider in the design and optimization of blood-contacting devices. Although the use of Computational Fluid Dynamics (CFD) in hemolysis prediction studies provides convenience and has promising potential, it is an extremely challenging process. Hemolysis predictions with CFD depend on the mesh, implementation method, coefficient set, and scalar-shear-stress model. To this end, an attempt was made to find the combination that would provide the most accurate result in hemolysis prediction with the commonly cited power-law based hemolysis model. In the hemolysis predictions conducted using CFD on the Food and Drug Administration (FDA) benchmark blood pump, 3 different scalar-shear-stress models, and 5 different coefficient sets with the power-law based hemolysis model were used. Also, a mesh independence test based on hemolysis and pressure head was performed. The pressure head results of CFD simulations were compared with published pressure head of the FDA benchmark blood pump and a good agreement was observed. In addition, results of CFD-hemolysis predictions which are conducted with scalar-shear-stress model and coefficient set combinations were compared with experimental hemolysis data at three operating conditions such as 6-7 L/min flow rates at 3500 rpm rotational speeds and 6 L/min at 2500 rpm. One of the combinations of the scalar-shear-stress model and the coefficient set was found to be within the error limits of the experimental measurements, while all other combinations overestimated hemolysis.
Collapse
Affiliation(s)
- Ahmet Onder
- Technical Sciences Vocational School, Mechanical and Metal Technologies Department, Konya Technical University, Konya, Turkey.
| | - Omer Incebay
- Faculty of Engineering and Natural Science, Mechanical Engineering Department, Konya Technical University, Konya, Turkey
| | - Rafet Yapici
- Faculty of Engineering and Natural Science, Mechanical Engineering Department, Konya Technical University, Konya, Turkey
| |
Collapse
|
2
|
Wu P. Recent advances in the application of computational fluid dynamics in the development of rotary blood pumps. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
3
|
Wu P, Huo JD, Zhang ZJ, Wang CJ. The influence of non-conformal grid interfaces on the results of large eddy simulation of centrifugal blood pumps. Artif Organs 2022; 46:1804-1816. [PMID: 35436356 DOI: 10.1111/aor.14263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/26/2022] [Accepted: 04/08/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Computational fluid dynamics has been widely used to assist the design and evaluation of blood pumps. Discretization errors associated with computational grid may influence the credibility of numerical simulations. Non-conformal grid interfaces commonly exist in rotary machines, including rotary blood pumps. Should grid size across the interface differ greatly, large errors may occur. METHODS This study explored the effects of non-conformal grid interface on the prediction of the flow field and hemolysis in blood pumps using large eddy simulation (LES). Two benchmarks, a nozzle model and a centrifugal blood pump were chosen as test cases. RESULTS This study found that non-conformal grid interfaces with considerable change of grid sizes led to discontinuities of flow variables and brought errors to metrics such as pressure head (7%) and hemolysis (up to 14%). CONCLUSIONS The results on the full unstructured grid are more accurate with negligible changes of flow variables across the non-conformal grid interface. A full unstructured grid should be employed for centrifugal blood pumps to minimize the influence of non-conformal grid interfaces for LES simulations.
Collapse
Affiliation(s)
- Peng Wu
- Artificial Organ Technology Laboratory, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Jia-Dong Huo
- Artificial Organ Technology Laboratory, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Zi-Jian Zhang
- Artificial Organ Technology Laboratory, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Chun-Ju Wang
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Huo JD, Wu P, Zhang L, Wu WT. Large eddy simulation as a fast and accurate engineering approach for the simulation of rotary blood pumps. Int J Artif Organs 2021; 44:887-899. [PMID: 34474617 DOI: 10.1177/03913988211041636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An accurate representation of the flow field in blood pumps is important for the design and optimization of blood pumps. The primary turbulence modeling methods applied to blood pumps have been the Reynolds-averaged Navier-Stokes (RANS) or URANS (unsteady RANS) method. Large eddy simulation (LES) method has been introduced to simulate blood pumps. Nonetheless, LES has not been widely used to assist in the design and optimization of blood pumps to date due to its formidable computational cost. The purpose of this study is to explore the potential of the LES technique as a fast and accurate engineering approach for the simulation of rotary blood pumps. The performance of "Light LES" (using the same time and spatial resolutions as the URANS) and LES in two rotary blood pumps was evaluated by comparing the results with the URANS and extensive experimental results. This study showed that the results of both "Light LES" and LES are superior to URANS, in terms of both performance curves and key flow features. URANS could not predict the flow separation and recirculation in diffusers for both pumps. In contrast, LES is superior to URANS in capturing these flows, performing well for both design and off-design conditions. The differences between the "Light LES" and LES results were relatively small. This study shows that with less computational cost than URANS, "Light LES" can be considered as a cost-effective engineering approach to assist in the design and optimization of rotary blood pumps.
Collapse
Affiliation(s)
- Jia-Dong Huo
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Peng Wu
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Liudi Zhang
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Wei-Tao Wu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
5
|
Shiraishi Y, Tachizaki Y, Inoue Y, Hayakawa M, Yamada A, Kayashima M, Matsumoto M, Horiuchi H, Yambe T. Hemolysis and von Willebrand factor degradation in mechanical shuttle shear flow tester. J Artif Organs 2021; 24:111-119. [PMID: 33559766 PMCID: PMC8154843 DOI: 10.1007/s10047-020-01219-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 04/15/2020] [Indexed: 12/02/2022]
Abstract
Chronic blood trauma caused by the shear stresses generated by mechanical circulatory support (MCS) systems is one of the major concerns to be considered during the development of ventricular assist devices. Large multimers with high-molecular-weight von Willebrand factor (VWF) are extended by the fluid forces in a shear flow and are cleaved by ADAMTS13. Since the mechanical revolving motions in artificial MCSs induce cleavage in large VWF multimers, nonsurgical bleeding associated with the MCS is likely to occur after mechanical hemodynamic support. In this study, the shear stress (~ 600 Pa) and exposure time related to hemolysis and VWF degradation were investigated using a newly designed mechanical shuttle shear flow tester. The device consisted of a pair of cylinders facing the test section of a small-sized pipe; both the cylinders were connected to composite mechanical heads with a sliding-sleeve structure for axial separation during the withdrawing motion. The influence of exposure time, in terms of the number of stress cycles, on hemolysis and VWF degradation was confirmed using fresh goat blood, and the differences in the rates of dissipation of the multimers were established. The plasma-free hemoglobin levels showed a logarithmic increase corresponding to the number of cycles, and the dissipation of large VWF multimers occurred within a few seconds under high shear stress flow conditions.
Collapse
Affiliation(s)
- Yasuyuki Shiraishi
- Department of Preclinical Evaluation, Pre-Clinical Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
- Department of Medical Engineering and Cardiology, Pre-Clinical Research Center, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Yuma Tachizaki
- Department of Medical Engineering and Cardiology, Pre-Clinical Research Center, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yusuke Inoue
- Department of Medical Engineering and Cardiology, Pre-Clinical Research Center, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Masaki Hayakawa
- Department of Blood Transfusion Medicine, Nara Medical University, Nara, Japan
| | - Akihiro Yamada
- Department of Medical Engineering and Cardiology, Pre-Clinical Research Center, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Michinori Kayashima
- Department of Blood Transfusion Medicine, Nara Medical University, Nara, Japan
| | - Masanori Matsumoto
- Department of Blood Transfusion Medicine, Nara Medical University, Nara, Japan
| | - Hisanori Horiuchi
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tomoyuki Yambe
- Department of Preclinical Evaluation, Pre-Clinical Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Medical Engineering and Cardiology, Pre-Clinical Research Center, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
6
|
Dai WF, Wu P, Liu GM. A two-phase flow approach for modeling blood stasis and estimating the thrombosis potential of a ventricular assist device. Int J Artif Organs 2020; 44:471-480. [PMID: 33258722 DOI: 10.1177/0391398820975405] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thrombosis and its related events have become a major concern during the development and optimization of ventricular assist devices (VADs, also called blood pumps), and limit their clinical use and economic benefits. Attempts have been made to model the thrombosis formation, considering hemodynamic and biochemical processes. However, the complexities and computational expenses are prohibitive. Blood stasis is one of the key factors which may lead to the formation of thrombosis and excessive thromboembolic risks for patients. This study proposed a novel approach for modeling blood stasis, based on a two-phase flow principle. The locations of blood residual can be tracked over time, so that regions of blood stasis can be identified. The blood stasis in an axial blood pump is simulated under various working conditions, the results agree well with the experimental results. In contrast, conventional hemodynamic metrics such as velocity, time-averaged wall shear stress (TAWSS), and relative residence time (RRT), were contradictory in judging risk of blood stasis and thrombosis, and inconsistent with experimental results. We also found that the pump operating at the designed rotational speed is less prone to blood stasis. The model provides an efficient and fast alternative for evaluating blood stasis and thrombosis potential in blood pumps, and will be a valuable addition to the tools to support the design and improvement of VADs.
Collapse
Affiliation(s)
- Wei-Feng Dai
- Artificial Organ Laboratory, Bio-Manufacturing Research Centre, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Peng Wu
- Artificial Organ Laboratory, Bio-Manufacturing Research Centre, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Guang-Mao Liu
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Abstract
Since the use of continuous flow blood pumps as ventricular assist devices is standard, the problems with haemolysis have increased. It is mainly induced by shear stress affecting the erythrocyte membrane. There are many investigations about haemolysis in laminar and turbulent blood flow. The results defined as threshold levels for the damage of erythrocytes depend on the exposure time of the shear stress, but they are very different, depending on the used experimental methods or the calculation strategy. Here, the results are resumed and shown in curves. Different models for the calculation of the strengths of erythrocytes are discussed. There are few results reported about tests of haemolysis in blood pumps, but some theoretical approaches for the design of continuous flow blood pumps according to low haemolysis have been investigated within the last years.
Collapse
Affiliation(s)
- Inge Köhne
- Department for Health Services Research, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
8
|
Wu P, Groß-Hardt S, Boehning F, Hsu PL. An energy-dissipation-based power-law formulation for estimating hemolysis. Biomech Model Mechanobiol 2019; 19:591-602. [DOI: 10.1007/s10237-019-01232-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 10/09/2019] [Indexed: 11/27/2022]
|
9
|
Malchesky PS. Artificial Organs 2018: A Year in Review. Artif Organs 2019; 43:288-317. [PMID: 30680758 DOI: 10.1111/aor.13428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/24/2022]
Abstract
In this Editor's Review, articles published in 2018 are organized by category and summarized. We provide a brief reflection of the research and progress in artificial organs intended to advance and better human life while providing insight for continued application of these technologies and methods. Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level." Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ Replacement, Recovery, and Regeneration from all over the world. Peer-reviewed special issues this year included contributions from the 13th International Conference on Pediatric Mechanical Circulatory Support Systems and Pediatric Cardiopulmonary Perfusion edited by Dr. Akif Undar, and the 25th Congress of the International Society for Mechanical Circulatory Support edited by Dr. Marvin Slepian. Additionally, many editorials highlighted the worldwide survival differences in hemodialysis and perspectives on mechanical circulatory support and stem cell therapies for cardiac support. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide meaningful suggestions to the author's work whether eventually accepted or rejected. Without these excellent and dedicated reviewers the quality expected from such a journal could not be possible. We also express our special thanks to our Publisher, John Wiley & Sons for their expert attention and support in the production and marketing of Artificial Organs. We look forward to reporting further advances in the coming years.
Collapse
|
10
|
Wu P, Gao Q, Hsu PL. On the representation of effective stress for computing hemolysis. Biomech Model Mechanobiol 2019; 18:665-679. [DOI: 10.1007/s10237-018-01108-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 12/15/2018] [Indexed: 11/29/2022]
|