1
|
Li Y, Xi Y, Wang H, Sun A, Deng X, Chen Z, Fan Y. The impact of rotor configurations on hemodynamic features, hemocompatibility and dynamic balance of the centrifugal blood pump: A numerical study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3671. [PMID: 36507614 DOI: 10.1002/cnm.3671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/11/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
To investigate the effect of rotor design configuration on hemodynamic features, hemocompatibility and dynamic balance of blood pumps. Computational fluid dynamics was employed to investigate the effects of rotor type (closed impeller, semi-open impeller), clearance height and back vanes on blood pump performance. In particular, the Eulerian hemolysis model based on a power-law function and the Lagrangian thrombus model with integrated stress accumulation and residence time were applied to evaluate the hemocompatibility of the blood pump. This study shows that compared to the closed impeller, the semi-open impeller can improve hemolysis at a slight sacrifice in head pressure, but increase the risk of thrombogenic potential and disrupt rotor dynamic balance. For the semi-open impeller, the pressure head, hemolysis, and axial thrust of the blood pump decrease with increasing front clearance, and the risk of thrombosis increases first and then decreases with increasing front clearance. Variations in back clearance have little effect on pressure head, but larger on back clearance, worsens hemolysis, thrombogenic potential and rotor dynamic balance. The employment of back vanes has little effect on the pressure head. All back vanes configurations have an increased risk of hemolysis in the blood pump but are beneficial for the improvement of the rotor dynamic balance of the blood pump. Reasonable back vanes configuration (higher height, wider width, longer length and more number) decreases the flow separation, increases the velocity of blood in the back clearance, and reduces the risk of blood pooling and thrombosis. It was also found that hemolysis index (HI) was highly negatively correlated with pressure difference between the top and back clearances (r = -.87), and thrombogenic potential was positively correlated with pressure difference between the top and back clearances (r = .71). This study found that rotor type, clearance height, and back vanes significantly affect the hydraulic performance, hemocompatibility and rotor dynamic balance of centrifugal blood pumps through secondary flow. These parameters should be carefully selected when designing and optimizing centrifugal blood pumps for improving the blood pump clinical outcomes.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
2
|
Hatakenaka K, Hijikata W, Fujiwara T, Ohuchi K, Inoue Y. Prevention of thrombus formation in blood pump by mechanical circular orbital excitation of impeller in magnetically levitated centrifugal pump. Artif Organs 2023; 47:425-431. [PMID: 36305737 PMCID: PMC10098525 DOI: 10.1111/aor.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/22/2022] [Accepted: 10/15/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Mechanical circulatory support devices, such as left ventricular assist devices, have recently been used in patients with heart failure as destination therapy but the formation of thrombus in blood pumps remains a critical problem. In this study, we propose a mechanical antithrombogenic method by impeller excitation using a magnetically levitated (Maglev) centrifugal pump. Previous studies have shown that one-directional excitation prevents thrombus; however, it is effective in only one direction. In this study, we aimed to obtain a better effect by vibrating it in a circular orbit to induce uniform changes in the shear-rate field entirely around the impeller. METHODS The blood coagulation time was compared using porcine blood. (1) The flow rate was set to 1 L/min, and applied excitation was at a frequency of 280 Hz and amplitude of 3 μm. (2) Moreover, the effect was compared by varying the frequency, amplitude, and direction of the excitation. In this experiment, the flow rate was set to 0.3 L/min. RESULTS (1) The thrombus formation time was 77 min without excitation and 133 min with excitation, which was 1.7 times longer. (2) The results showed no difference between (280 Hz, 3 μm) and (50 Hz, 16 μm) circular orbital excitations, and no directional difference, with thrombus formation of 2.5 times longer under all conditions than that without excitation. CONCLUSION In the case of simple reciprocating excitation, the time was approximately 1.2 times longer. This indicated that the circular orbital excitation is more effective.
Collapse
Affiliation(s)
- Kohei Hatakenaka
- School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Wataru Hijikata
- School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Tatsuki Fujiwara
- Department of Cardiovascular Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Katsuhiro Ohuchi
- Center for Experimental Animals, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Inoue
- Advanced Medical Engineering Research Center, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
3
|
Jiang M, Sakota D, Kosaka R, Hijikata W. Impact of gap size and groove design of hydrodynamic bearing on plasma skimming effect for use in rotary blood pump. J Artif Organs 2022; 25:195-203. [PMID: 35088287 DOI: 10.1007/s10047-021-01308-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
Abstract
Plasma skimming can exclude red blood cells from high shear regions in the gaps formed by hydrodynamic bearings in rotary blood pumps. We investigated the effect of the gap size and groove design on the plasma skimming efficiency. Spiral groove bearings (SGBs) were installed into a specially designed test rig for in vitro experiments performed using human blood. The measured gap between the ridges of the bearing and the rotor surface was 17-26 µm at a flow rate of 150 ml/min and a rotor speed of 2400 rpm. Three different patterns of SGBs were designed (SGB-0, SGB-30, and SGB-60) with various degrees of the circumferential component. The hematocrit measured by a high-speed camera was compared with the hematocrit in the circuit, and the plasma skimming efficiency for the three bearing patterns was evaluated at hematocrits of 20%, 25%, and 30%. SGB-60, which had the strongest circumferential component, provided the best plasma skimming efficiency. When the gap size was less than 20 µm, the red blood cells in the gaps between the ridges of the bearing and rotor surface reduced significantly and the efficiency became higher than 90%. The gap size had the strongest effect on producing a significant plasma skimming. The plasma skimming efficiency can be significantly improved by optimizing the bearing gap size and groove design, which facilitates the further development of SGBs for use in applications such as rotary blood pumps.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Artificial Organ Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki, 305-8564, Japan
| | - Daisuke Sakota
- Artificial Organ Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki, 305-8564, Japan.
| | - Ryo Kosaka
- Artificial Organ Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki, 305-8564, Japan
| | - Wataru Hijikata
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
4
|
Sakurai H, Fujiwara T, Ohuchi K, Hijikata W, Inoue Y, Seki H, Tahara T, Yokota S, Ogata A, Mizuno T, Arai H. Novel application of indocyanine green fluorescence imaging for real-time detection of thrombus in a membrane oxygenator. Artif Organs 2021; 45:1173-1182. [PMID: 34037247 DOI: 10.1111/aor.13999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/17/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) plays an important role in the coronavirus disease 2019 (COVID-19) pandemic. Management of thrombi in ECMO is generally an important issue; especially in ECMO for COVID-19 patients who are prone to thrombus formation, the thrombus formation in oxygenators is an unresolved issue, and it is very difficult to deal with. To prevent thromboembolic complications, it is necessary to develop a method for early thrombus detection. We developed a novel method for detailed real-time observation of thrombi formed in oxygenators using indocyanine green (ICG) fluorescence imaging. The purpose of this study was to verify the efficacy of this novel method through animal experiments. The experiments were performed three times using three pigs equipped with veno-arterial ECMO comprising a centrifugal pump (CAPIOX SL) and an oxygenator (QUADROX). To create thrombogenic conditions, the pump flow rate was set at 1 L/min without anticoagulation. The diluted ICG (0.025 mg/mL) was intravenously administered at a dose of 10 mL once an hour. A single dose of ICG was 0.25mg. The oxygenator was observed with both an optical detector (PDE-neo) and the naked eye every hour after measurement initiation for a total of 8 hours. With this dose of ICG, we could observe it by fluorescence imaging for about 15 minutes. Under ICG imaging, the inside of the oxygenator was observed as a white area. A black dot suspected to be the thrombus appeared 6-8 hours after measurement initiation. The thrombus and the black dot on ICG imaging were finely matched in terms of morphology. Thus, we succeeded in real-time thrombus detection in an oxygenator using ICG imaging. The combined use of ICG imaging and conventional routine screening tests could compensate for each other's weaknesses and significantly improve the safety of ECMO.
Collapse
Affiliation(s)
- Hironobu Sakurai
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuki Fujiwara
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Katsuhiro Ohuchi
- Department of Advanced Surgical Technology Research and Development, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wataru Hijikata
- School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Yusuke Inoue
- Advanced Medical Engineering Research Center, Asahikawa Medical University, Asahikawa, Japan
| | - Haruna Seki
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoki Tahara
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sachie Yokota
- Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Asato Ogata
- Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Mizuno
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokuni Arai
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
5
|
Seki H, Fujiwara T, Hijikata W, Murashige T, Tahara T, Yokota S, Ogata A, Ohuchi K, Mizuno T, Arai H. Evaluation of real-time thrombus detection method in a magnetically levitated centrifugal blood pump using a porcine left ventricular assist circulation model. Artif Organs 2021; 45:726-735. [PMID: 33432615 DOI: 10.1111/aor.13915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023]
Abstract
Pump thrombosis induces significant complications and requires timely detection. We proposed real-time monitoring of pump thrombus in a magnetically levitated centrifugal blood pump (mag-lev pump) without using additional sensors, by focusing on the changes in the displacement of the pump impeller. The phase difference between the current and displacement of the impeller increases with pump thrombus. This thrombus detection method was previously evaluated through simulated circuit experiments using porcine blood. Evaluation of real-time thrombus detection in a mag-lev blood pump was performed using a porcine left ventricular assist circulation model in this study. Acute animal experiments were performed five times using five Japanese domestic pigs. To create thrombogenic conditions, fibrinogen coating that induces thrombus formation in a short time was applied to the inner surfaces of the pump. An inflow and an outflow cannula were inserted into the apex of the left ventricle and the carotid artery, respectively, by a minimally invasive surgical procedure that allowed minimal bleeding and hypothermia. Pump flow was maintained at 1 L/min without anticoagulation. The vibrational frequency of the impeller (70 Hz) and its vibrational amplitude (30 μm) were kept constant. The thrombus was detected based on the fact that the phase difference between the impeller displacement and input current to the magnetic bearing increases when a thrombus is formed inside a pump. The experiment was terminated when the phase difference increased by over 1° from the lowest value or when the phase difference was at the lowest value 12 hours after commencing measurements. The phase difference increased by over 1° in three cases. The pump was stopped after 12 hours in two cases. Pump thrombi were found in the pump in three cases in which the phase difference increased by over 1°. No pump thrombus was found in the other two cases in which the phase difference did not increase. We succeeded in real-time thrombus monitoring of a mag-lev pump in acute animal experiments.
Collapse
Affiliation(s)
- Haruna Seki
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuki Fujiwara
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wataru Hijikata
- School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Tomotaka Murashige
- School of Engineering, Tokyo Institute of Technology, Tokyo, Japan.,Department of Advanced Surgical Technology Research and Development, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoki Tahara
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sachie Yokota
- Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Asato Ogata
- Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Katsuhiro Ohuchi
- Department of Advanced Surgical Technology Research and Development, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Mizuno
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokuni Arai
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|