1
|
Marlar R, Abbas F, Obeid R, Frisbie S, Ghazoul A, Rezaee A, Sims J, Rampazzo A, Bassiri Gharb B. A meta-analysis of perfusion parameters affecting weight gain in ex vivo perfusion. Artif Organs 2024. [PMID: 39157933 DOI: 10.1111/aor.14841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/27/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Ex vivo machine perfusion (EVMP) has been established to extend viability of donor organs. However, EVMP protocols are inconsistent. We hypothesize that there is a significant relationship between specific parameters during EVMP and perfusion outcomes. METHODS A meta-analysis of literature was conducted in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement. The search encompassed articles published before July 25, 2023. PubMed, Embase, and CENTRAL databases were screened using search terms "ex-vivo," "ex-situ," "machine," and "perfusion." Weight gain, an indicator of organ viability, was chosen to compare outcomes. Extracted variables included perfused organ, warm and cold ischemia time before perfusion, perfusion duration, perfusate flow, pressure, temperature, perfusate composition (presence of cellular or acellular oxygen carrier, colloids, and other supplements) and percent weight change. Data were analyzed using SPSS statistical software. RESULTS Overall, 44 articles were included. Red blood cell-based perfusates resulted in significantly lower weight gain compared to acellular perfusates without oxygen carriers (11.3% vs. 27.0%, p < 0.001). Hemoglobin-based oxygen carriers resulted in significantly lower weight gain compared to acellular perfusates (16.5% vs. 27%, p = 0.006). Normothermic perfusion led to the least weight gain (14.6%), significantly different from hypothermic (24.3%) and subnormothermic (25.0%) conditions (p < 0.001), with no significant difference between hypothermic and subnormothermic groups (24.3% vs. 25.0%, p = 0.952). There was a positive correlation between flow rate and weight gain (ß = 13.1, R = 0.390, p < 0.001). CONCLUSIONS Oxygen carriers, low flow rates, and normothermic perfusate temperature appear to improve outcomes in EVMP. These findings offer opportunities for improving organ transplantation outcomes.
Collapse
Affiliation(s)
- Riley Marlar
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Fuad Abbas
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rommy Obeid
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sean Frisbie
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adam Ghazoul
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ava Rezaee
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jack Sims
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Antonio Rampazzo
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
2
|
Ertugrul IA, Puspitarani RADA, Wijntjes B, Vervoorn MT, Ballan EM, van der Kaaij NP, van Goor H, Westenbrink BD, van der Plaats A, Nijhuis F, van Suylen V, Erasmus ME. Ex Situ Left Ventricular Pressure-Volume Loop Analyses for Donor Hearts: Proof of Concept in an Ovine Experimental Model. Transpl Int 2024; 37:12982. [PMID: 39055346 PMCID: PMC11269103 DOI: 10.3389/ti.2024.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Ex situ heart perfusion (ESHP) has emerged as an important strategy to preserve donation after brain death (DBD) and donation after circulatory death (DCD) donor hearts. Clinically, both DBD and DCD hearts are successfully preserved using ESHP. Viability assessment is currently based on biochemical values, while a reliable method for graft function assessment in a physiologic working mode is unavailable. As functional assessment during ESHP has demonstrated the highest predictive value of outcome post-transplantation, this is an important area for improvement. In this study, a novel method for ex situ assessment of left ventricular function with pressure-volume loop analyses is evaluated. Ovine hearts were functionally evaluated during normothermic ESHP with the novel pressure-volume loop system. This system provides an afterload and adjustable preload to the left ventricle. By increasing the preload and measuring end-systolic elastance, the system could successfully assess the left ventricular function. End-systolic elastance at 60 min and 120 min was 2.8 ± 1.8 mmHg/mL and 2.7 ± 0.7 mmHg/mL, respectively. In this study we show a novel method for functional graft assessment with ex situ pressure-loop analyses during ESHP. When further validated, this method for pressure-volume assessments, could be used for better graft selection in both DBD and DCD donor hearts.
Collapse
Affiliation(s)
- I. A. Ertugrul
- Department of Cardiothoracic Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - R. A. D. A. Puspitarani
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | | | - M. T. Vervoorn
- Department of Cardiothoracic Surgery, University Medical Centre Utrecht, Utrecht, Netherlands
| | - E. M. Ballan
- Department of Cardiothoracic Surgery, University Medical Centre Utrecht, Utrecht, Netherlands
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
| | - N. P. van der Kaaij
- Department of Cardiothoracic Surgery, University Medical Centre Utrecht, Utrecht, Netherlands
| | - H. van Goor
- Department of Medical Biology and Pathology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - B. D. Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | | | | | - V. van Suylen
- Department of Cardiothoracic Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - M. E. Erasmus
- Department of Cardiothoracic Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Schmalkuche K, Rother T, Burgmann JM, Voß H, Höffler K, Dogan G, Ruhparwar A, Schmitto JD, Blasczyk R, Figueiredo C. Heart immunoengineering by lentiviral vector-mediated genetic modification during normothermic ex vivo perfusion. Front Immunol 2024; 15:1404668. [PMID: 38903492 PMCID: PMC11188324 DOI: 10.3389/fimmu.2024.1404668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Heart transplantation is associated with major hurdles, including the limited number of available organs for transplantation, the risk of rejection due to genetic discrepancies, and the burden of immunosuppression. In this study, we demonstrated the feasibility of permanent genetic engineering of the heart during ex vivo perfusion. Lentiviral vectors encoding for short hairpin RNAs targeting beta2-microglobulin (shβ2m) and class II transactivator (shCIITA) were delivered to the graft during two hours of normothermic EVHP. Highly efficient genetic engineering was indicated by stable reporter gene expression in endothelial cells and cardiomyocytes. Remarkably, swine leucocyte antigen (SLA) class I and SLA class II expression levels were decreased by 66% and 76%, respectively, in the vascular endothelium. Evaluation of lactate, troponin T, and LDH levels in the perfusate and histological analysis showed no additional cell injury or tissue damage caused by lentiviral vectors. Moreover, cytokine secretion profiles (IL-6, IL-8, and TNF-α) of non-transduced and lentiviral vector-transduced hearts were comparable. This study demonstrated the ex vivo generation of genetically engineered hearts without compromising tissue integrity. Downregulation of SLA expression may contribute to reduce the immunogenicity of the heart and support graft survival after allogeneic or xenogeneic transplantation.
Collapse
Affiliation(s)
- Katharina Schmalkuche
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- Transregional Collaborative Research Centre 127, Hannover Medical School, Hannover, Germany
| | - Tamina Rother
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Jonathan M. Burgmann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Henrike Voß
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Klaus Höffler
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Günes Dogan
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Arjang Ruhparwar
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jan D. Schmitto
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- Transregional Collaborative Research Centre 127, Hannover Medical School, Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- Transregional Collaborative Research Centre 127, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Kaffka Genaamd Dengler SE, Mishra M, van Tuijl S, de Jager SCA, Sluijter JPG, Doevendans PA, van der Kaaij NP. Cold Oxygenated Machine Perfusion Improves Functional Survival of Slaughterhouse Porcine Hearts. ASAIO J 2023; 69:774-781. [PMID: 37146423 DOI: 10.1097/mat.0000000000001955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
The aim of our study was to explore the effect of cold oxygenated machine perfusion in slaughterhouse porcine hearts on functional myocardial survival compared to static cold storage (SCS). Seventeen hearts were harvested from Dutch Landrace Hybrid pigs, which were sacrificed for human consumption and randomly assigned to the 4 hours SCS group (N = 10) or the 4 hours cold oxygenated machine perfusion group (N = 7). Hearts were perfused with a homemade Heart Solution with a perfusion pressure of 20-25 mm Hg to achieve a coronary flow between 100 and 200 ml/minute. After 4 hours of preservation, all hearts were functionally assessed during 4 hours on a normothermic, oxygenated diluted whole blood (1:2) loaded heart model. Survival was defined by a cardiac output above 3 L with a mean aortic pressure above 60 mm Hg. Survival was significantly better in the cold oxygenated machine perfusion group, where 100% of the hearts reached the 4 hours end-point, as compared with 30% in the SCS group ( p = 0.006). Interestingly, warm ischemic time was inversely related to survival in the SCS group with a correlation coefficient of -0.754 ( p = 0.012). Cold oxygenated machine perfusion improves survival of the slaughterhouse porcine heart.
Collapse
Affiliation(s)
| | - Mudit Mishra
- From the Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory Health Research Center, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | | | - Saskia C A de Jager
- Laboratory of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory Health Research Center, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory Health Research Center, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Niels P van der Kaaij
- From the Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
5
|
Wagner MJ, Hatami S, Freed DH. Thoracic organ machine perfusion: A review of concepts with a focus on reconditioning therapies. FRONTIERS IN TRANSPLANTATION 2023; 2:1060992. [PMID: 38993918 PMCID: PMC11235380 DOI: 10.3389/frtra.2023.1060992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/06/2023] [Indexed: 07/13/2024]
Abstract
Thoracic organ transplantation, including lung, heart, and heart-lung transplants are highly regarded as gold standard treatments for patients suffering from heart failure or chronic end stage lung conditions. The relatively high prevalence of conditions necessitating thoracic organ transplants combined with the lack of available organs has resulted in many either dying or becoming too ill to receive a transplant while on the waiting list. There is a dire need to increase both the number of organs available and the utilization of such organs. Improved preservation techniques beyond static storage have shown great potential to lengthen the current period of viability of thoracic organs while outside the body, promising better utilization rates, increased donation distance, and improved matching of donors to recipients. Ex-situ organ perfusion (ESOP) can also make some novel therapeutic strategies viable, and the combination of the ESOP platform with such reconditioning therapies endeavors to better improve functional preservation of organs in addition to making more organs viable for transplantation. Given the abundance of clinical and pre-clinical studies surrounding reconditioning of thoracic organs in combination with ESOP, we summarize in this review important concepts and research regarding thoracic organ machine perfusion in combination with reconditioning therapies.
Collapse
Affiliation(s)
| | - Sanaz Hatami
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Darren H Freed
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Alberta Transplant Institute, Edmonton, AB, Canada
| |
Collapse
|
6
|
Gonzalez JM, Villarreal C, Fasci A, Rocco DD, Salazar S, Khalil A, Wearden B, Oseghale J, Garcia M, Portillo DJ, Hood RL. Evaluating the Performance of a Nonelectronic, Versatile Oxygenating Perfusion System across Viscosities Representative of Clinical Perfusion Solutions Used for Organ Preservation. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010002. [PMID: 36671574 PMCID: PMC9854583 DOI: 10.3390/bioengineering10010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Introduction: On the United States' Organ Transplantation Waitlist, approximately 17 people die each day waiting for an organ. The situation continues to deteriorate as the discrepancy between harvested organs and the number of patients in need is increasing. Static cold storage is the clinical standard method for preserving a harvested organ but is associated with several drawbacks. Machine perfusion of an organ has been shown to improve preservation quality as well as preservation time over static cold storage. While there are machine perfusion devices clinically available, they are costly and limited to specific organs and preservation solutions. This study presents a versatile oxygenating perfusion system (VOPS) that supplies oxygen and pulsatile perfusion. Materials and Methods: Experiments evaluated the system's performance with a human kidney mimicking hydraulic analog using multiple compressed oxygen supply pressures and aqueous solutions with viscosities ranging from 1 to 6.5 cP, which simulated viscosities of commonly used organ preservation solutions. Results and Conclusions: The VOPS produced mean flow rates ranging from 0.6 to 28.2 mL/min and perfusion pressures from 4.8 to 96.8 mmHg, which successfully achieved the desired perfusion parameters for human kidneys. This work provides evidence that the VOPS described herein has the versatility to perfuse organs using many of the clinically available preservation solutions.
Collapse
Affiliation(s)
- Jose M. Gonzalez
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Carorina Villarreal
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Anjelyka Fasci
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - David Di Rocco
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Sophia Salazar
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Anis Khalil
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Brandt Wearden
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Jessica Oseghale
- Department of Biomedical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Mariana Garcia
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Daniel J. Portillo
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
- Correspondence: (D.J.P.); (R.L.H.)
| | - R. Lyle Hood
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
- Department of Biomedical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
- Correspondence: (D.J.P.); (R.L.H.)
| |
Collapse
|
7
|
Development and Characterization of a Nonelectronic Versatile Oxygenating Perfusion System for Tissue Preservation. Ann Biomed Eng 2022; 50:978-990. [PMID: 35648279 DOI: 10.1007/s10439-022-02977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/09/2022] [Indexed: 11/01/2022]
Abstract
Oxygenated machine perfusion of human organs has been shown to improve both preservation quality and time duration when compared to the current gold standard: static cold storage. However, existing machine perfusion devices designed for preservation and transportation of transplantable organs are too complicated and organ-specific to merit use as a solution for all organs. This work presents a novel, portable, and nonelectronic device potentially capable of delivering oxygenated machine perfusion to a variety of organs. An innovative pneumatic circuit system regulates a compressed oxygen source that cyclically inflates and deflates silicone tubes, which function as both the oxygenator and perfusion pump. Different combinations of silicone tubes in single or parallel configurations, with lengths ranging from 1.5 to 15.2 m, were evaluated at varying oxygen pressures from 27.6 to 110.3 kPa. The silicone tubes in parallel configurations produced higher peak perfusion pressures (70% increase), mean flow rates (102% increase), and oxygenation rates (268% increase) than the single silicone tubes that had equivalent total lengths. While pumping against a vascular resistance element that mimicked a kidney, the device achieved perfusion pressures (8.4-131.6 mmHg), flow rates (2.0-40.2 mL min-1), and oxygenation rates (up to 388 μmol min-1) that are consistent with values used in previous kidney preservation studies. The nonelectronic device achieved those perfusion parameters using 4.4 L min-1 of oxygen to operate. These results demonstrate that oxygenated machine perfusion can be successfully achieved without any electronic components.
Collapse
|