1
|
Tan B, Chua J, Wong D, Liu X, Ismail M, Schmetterer L. Techniques for imaging the choroid and choroidal blood flow in vivo. Exp Eye Res 2024; 247:110045. [PMID: 39154819 DOI: 10.1016/j.exer.2024.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
The choroid, which is a highly vascularized layer between the retina and sclera, is essential for supplying oxygen and nutrients to the outer retina. Choroidal vascular dysfunction has been implicated in numerous ocular diseases, including age-related macular degeneration, central serous chorioretinopathy, polypoidal choroidal vasculopathy, and myopia. Traditionally, the in vivo assessment of choroidal blood flow relies on techniques such as laser Doppler flowmetry, laser speckle flowgraphy, pneumotonometry, laser interferometry, and ultrasonic color Doppler imaging. While the aforementioned methods have provided valuable insights into choroidal blood flow regulation, their clinical applications have been limited. Recent advancements in optical coherence tomography and optical coherence tomography angiography have expanded our understanding of the choroid, allowing detailed visualization of the larger choroidal vessels and choriocapillaris, respectively. This review provides an overview of the available techniques that can investigate the choroid and its blood flow in vivo. Future research should combine these techniques to comprehensively image the entire choroidal microcirculation and develop robust methods to quantify choroidal blood flow. The potential findings will provide a better picture of choroidal hemodynamics and its effect on ocular health and disease.
Collapse
Affiliation(s)
- Bingyao Tan
- Singapore Eye Research Institute, National Eye Centre, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | - Jacqueline Chua
- Singapore Eye Research Institute, National Eye Centre, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | - Damon Wong
- Singapore Eye Research Institute, National Eye Centre, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Xinyu Liu
- Singapore Eye Research Institute, National Eye Centre, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | - Munirah Ismail
- Singapore Eye Research Institute, National Eye Centre, Singapore
| | - Leopold Schmetterer
- Singapore Eye Research Institute, National Eye Centre, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; School of Chemical and Biomedical Engineering, Nanyang Technological University (NTU), Singapore; Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Rothschild Foundation Hospital, Paris, France.
| |
Collapse
|
2
|
Xia H, Yang J, Hou Q, Wu X, Wang C, Li X. Insights into the pattern of choroidal vascularity index changes in idiopathic macular hole. Sci Rep 2024; 14:1132. [PMID: 38212475 PMCID: PMC10784455 DOI: 10.1038/s41598-024-51739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024] Open
Abstract
This retrospective study aimed to investigate the changes in choroidal vascularity index (CVI) before and after surgery for idiopathic macular hole (MH). Enhanced depth imaging optical coherence tomography (EDI-OCT) images were analyzed at baseline and at 1-week, 1-month, and 3-month postoperative visits. A total of 97 patients (97 eyes) were included in the study. At baseline, overall CVI and macular CVI showed negative correlation with axial length (AL) and positive correlation with central corneal thickness (CCT). There were no significant differences in macular CVI or overall CVI between affected and healthy eyes, as well as in subgroup analysis of different stages of macular CVI. Following surgery, there was a significant decrease in CVI at 1 week postoperatively, followed by a gradual recovery to baseline levels over time. The observed changes in CVI may be attributed to factors such as air tamponade, pressure changes, and photoreceptor metabolism. This study provides insights into the pattern of CVI changes associated with MH surgery. The findings suggest that stage 4 MH is associated with decreased macular CVI in affected eyes. These results contribute to a better understanding of the effects of surgery on choroidal blood flow in MH patients.
Collapse
Affiliation(s)
- Huaqin Xia
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Jiarui Yang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Qingyi Hou
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Xinchun Wu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Changguan Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China.
| | - Xuemin Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China.
| |
Collapse
|