1
|
He S, Lundberg B, Hallberg J, Klevebro S, Pershagen G, Eneroth K, Melén E, Bottai M, Gruzieva O. Joint association of air pollution exposure and inflammation-related proteins in relation to infant lung function. Int J Hyg Environ Health 2024; 255:114294. [PMID: 37952388 DOI: 10.1016/j.ijheh.2023.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/21/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND AND AIM Systemic inflammation is one potential mechanism underlying negative impact of air pollution on lung function. Levels of inflammation-related proteins have the potential to characterize infants' susceptibility to air pollution induced lung function impairment. This study aimed to examine the interplay between air pollution exposure and inflammation-related proteins on lung function in 6-months-old infants. METHODS In the EMIL birth cohort from Stockholm (n = 82), dynamic spirometry, along with measurement of plasma levels of 92 systemic inflammation-related proteins (Olink Proseek Multiplex Inflammation panel) have been carried out in infants aged six months. Time-weighted average exposure to particles with an aerodynamic diameter of <10 μm (PM10), <2.5 μm (PM2.5), and nitrogen dioxide (NO2) at residential addresses from birth and onwards was estimated via validated dispersion models. To characterize the abnormality of inflammation-related protein profile, for each protein in each infant, we calculated the relative deviance of the protein level from age- and sex-specific median in terms of its age- and sex-specific interquartile range (IQR), followed by computing the absolute value of the smallest relative deviance, "minimum absolute deviance". Using linear regression models, interaction of air pollution and the abnormal inflammatory profile on lung function was estimated on the additive scale. RESULTS We found joint association of PM exposure and an abnormal inflammatory protein profile in relation to FEV0.5 and FVC. For 0.1 unit increase in minimum absolute deviance, one IQR increase in PM10 was associated with 85.9 ml (95% CI: -122.9, -48.9) additional decrease in FEV0.5, and 72.3 ml (95% CI: -121.5, -23.2) additional decrease in FVC. Similar results were obtained with PM2.5 exposure, while less apparent for NO2. CONCLUSIONS Early life air pollution exposure and abnormal inflammation-related protein profiles may interact synergistically towards lower lung function in infants.
Collapse
Affiliation(s)
- Shizhen He
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Björn Lundberg
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Jenny Hallberg
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Susanna Klevebro
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Eneroth
- Environment and Health Administration, SLB-analys, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Matteo Bottai
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
2
|
Turner MC, Andersen ZJ, Neira M, Krzyzanowski M, Malmqvist E, González Ortiz A, Kiesewetter G, Katsouyanni K, Brunekreef B, Melén E, Ljungman P, Tolotto M, Forastiere F, Dendale P, Price R, Bakke O, Reichert S, Hoek G, Pershagen G, Peters A, Querol X, Gerometta A, Samoli E, Markevych I, Basthiste R, Khreis H, Pant P, Nieuwenhuijsen M, Sacks JD, Hansen K, Lymes T, Stauffer A, Fuller GW, Boogaard H, Hoffmann B. Clean air in Europe for all! Taking stock of the proposed revision to the ambient air quality directives: a joint ERS, HEI and ISEE workshop report. Eur Respir J 2023; 62:2301380. [PMID: 37827574 PMCID: PMC10894647 DOI: 10.1183/13993003.01380-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
Ambient air pollution is a major public health concern and comprehensive new legislation is currently being considered to improve air quality in Europe. The European Respiratory Society (ERS), Health Effects Institute (HEI), and International Society for Environmental Epidemiology (ISEE) organised a joint meeting on May 24, 2023 in Brussels, Belgium, to review and critically evaluate the latest evidence on the health effects of air pollution and discuss ongoing revisions of the European Ambient Air Quality Directives (AAQDs). A multi-disciplinary expert group of air pollution and health researchers, patient and medical societies, and policy representatives participated. This report summarises key discussions at the meeting.
Collapse
Affiliation(s)
- Michelle C Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Maria Neira
- World Health Organization (WHO), Geneva, Switzerland
| | | | | | | | - Gregor Kiesewetter
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | | | | | - Erik Melén
- Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Paul Dendale
- European Society of Cardiology (ESC), Sophia Antipolis, France
| | - Richard Price
- European Cancer Organisation (ECO), Brussels, Belgium
| | - Ole Bakke
- Standing Committee of European Doctors (CPME), Brussels, Belgium
| | - Sibylle Reichert
- International Association of Mutual Benefit Societies (AIM), Brussels, Belgium
| | - Gerard Hoek
- Utrecht University, Utrecht, The Netherlands
| | | | - Annette Peters
- Helmholtz München - German Center for Environmental Health, Neuherberg, Germany
- IBE, Medical Faculty, Ludwig Maximilians Universität, Munich, Germany
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | | | - Evangelia Samoli
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Iana Markevych
- Institute of Psychology, Jagiellonian University, Krakow, Poland
- Health and Quality of Life in a Green and Sustainable Environment, SRIPD, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Haneen Khreis
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jason D Sacks
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency (EPA), Research Triangle Park, NC, USA
| | - Kjeld Hansen
- European Lung Foundation, Sheffield, UK
- Kristiania University College, Oslo, Norway
| | | | | | - Gary W Fuller
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | | | | |
Collapse
|
3
|
Vicedo-Cabrera AM, Melén E, Forastiere F, Gehring U, Katsouyanni K, Yorgancioglu A, Ulrik CS, Hansen K, Powell P, Ward B, Hoffmann B, Andersen ZJ. Climate change and respiratory health: a European Respiratory Society position statement. Eur Respir J 2023; 62:2201960. [PMID: 37661094 DOI: 10.1183/13993003.01960-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 07/05/2023] [Indexed: 09/05/2023]
Affiliation(s)
- Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Stockholm, Sweden
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Regional Health Service/ASL Roma 1, Rome, Italy
- Science Policy and Epidemiology Environmental Research Group King's College London, London UK
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Klea Katsouyanni
- National and Kapodistrian University of Athens, Medical School, Athens, Greece
- Environmental Research Group, School of Public Health, Imperial College London, London, UK
| | - Arzu Yorgancioglu
- Celal Bayar University Medical Faculty Department of Pulmonology, Manisa, Turkey
| | - Charlotte Suppli Ulrik
- Department of Respiratory Medicine, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Hansen
- European Lung Foundation, Sheffield, UK
- Kristiania University College, Technology, Oslo, Norway
| | | | - Brian Ward
- European Respiratory Society, Brussels, Belgium
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Zorana Jovanovic Andersen
- Section of Environment and Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Ziou M, Gao CX, Wheeler AJ, Zosky GR, Stephens N, Knibbs LD, Williamson GJ, Melody SM, Venn AJ, Dalton MF, Dharmage SC, Johnston FH. Primary and pharmaceutical care usage concurrent associations with a severe smoke episode and low ambient air pollution in early life. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163580. [PMID: 37100138 DOI: 10.1016/j.scitotenv.2023.163580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Due to climate change, landscape fires account for an increasing proportion of air pollution emissions, and their impacts on primary and pharmaceutical care are little understood. OBJECTIVES To evaluate associations between exposure in two early life periods to severe levels of PM2.5 from a mine fire, background PM2.5, and primary and pharmaceutical care. METHODS We linked records of births, general practitioner (GP) presentations and prescription dispensing for children born in the Latrobe Valley, Australia, 2012-2014, where a severe mine fire occurred in February-March 2014 in an area with otherwise low levels of ambient PM2.5. We assigned modelled exposure estimates for fire-related (cumulative over the fire and peak 24-hour average) and annual ambient PM2.5 to residential address. Associations with GP presentations and dispensing of prescribed medications in the first two years of life (exposure in utero) and in the two years post-fire (exposure in infancy) were estimated using two-pollutant quasi-Poisson regression models. RESULTS Exposure in utero to fire-related PM2.5 was associated with an increase in systemic steroid dispensing (Cumulative: IRR = 1.11, 95%CI = 1.00-1.24 per 240 μg/m3; Peak: IRR = 1.15, 95%CI = 1.00-1.32 per 45 μg/m3), while exposure in infancy was associated with antibiotic dispensing (Cumulative: IRR = 1.05, 95%CI = 1.00-1.09; Peak: IRR = 1.06, 95%CI = 1.00-1.12). Exposure in infancy to ambient PM2.5, despite relatively low levels from a global perspective (Median = 6.1 μg/m3), was associated with an increase in antibiotics (IRR = 1.10, 95%CI = 1.01-1.19 per 1.4 μg/m3) and in GP presentations (IRR = 1.05, 95%CI = 1.00-1.11), independently from exposure to the fire. We also observed differences in associations between sexes with GP presentations (stronger in girls) and steroid skin cream dispensing (stronger in boys). DISCUSSION Severe medium-term concentrations of PM2.5 were linked with increased pharmaceutical treatment for infections, while chronic low levels were associated with increased prescriptions dispensed for infections and primary care usage. Our findings also indicated differences between sexes.
Collapse
Affiliation(s)
- Myriam Ziou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Caroline X Gao
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Amanda J Wheeler
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, Aspendale, Victoria 3195, Australia
| | - Graeme R Zosky
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Nicola Stephens
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Luke D Knibbs
- School of Public Health, The University of Sydney, NSW 2006, Australia; Public Health Research Analytics and Methods for Evidence, Public Health Unit, Sydney Local Health District, Camperdown, NSW 2050, Australia
| | - Grant J Williamson
- School of Natural Sciences, University of Tasmania, Sandy Bay, Tasmania 7005, Australia
| | - Shannon M Melody
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Alison J Venn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Marita F Dalton
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, School of Population and Global Health, The University of Melbourne, Carlton, Victoria 3052, Australia
| | - Fay H Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia.
| |
Collapse
|
5
|
Andersen ZJ, Vicedo-Cabrera AM, Hoffmann B, Melén E. Climate change and respiratory disease: clinical guidance for healthcare professionals. Breathe (Sheff) 2023; 19:220222. [PMID: 37492343 PMCID: PMC10365076 DOI: 10.1183/20734735.0222-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/28/2023] [Indexed: 07/27/2023] Open
Abstract
Climate change is one of the major public health emergencies with already unprecedented impacts on our planet, environment and health. Climate change has already resulted in substantial increases in temperatures globally and more frequent and extreme weather in terms of heatwaves, droughts, dust storms, wildfires, rainstorms and flooding, with prolonged and altered allergen and microbial exposure as well as the introduction of new allergens to certain areas. All these exposures may have a major burden on patients with respiratory conditions, which will pose increasing challenges for respiratory clinicians and other healthcare providers. In addition, complex interactions between these different factors, along with other major environmental risk factors (e.g. air pollution), will exacerbate adverse health effects on the lung. For example, an increase in heat and sunlight in urban areas will lead to increases in ozone exposure among urban populations; effects of very high exposure to smoke and pollution from wildfires will be exacerbated by the accompanying heat and drought; and extreme precipitation events and flooding will increase exposure to humidity and mould indoors. This review aims to bring respiratory healthcare providers up to date with the newest research on the impacts of climate change on respiratory health. Respiratory clinicians and other healthcare providers need to be continually educated about the challenges of this emerging and growing public health problem and be equipped to be the key players in solutions to mitigate the impacts of climate change on patients with respiratory conditions. Educational aims To define climate change and describe major related environmental factors that pose a threat to patients with respiratory conditions.To provide an overview of the epidemiological evidence on climate change and respiratory diseases.To explain how climate change interacts with air pollution and other related environmental hazards to pose additional challenges for patients.To outline recommendations to protect the health of patients with respiratory conditions from climate-related environmental hazards in clinical practice.To outline recommendations to clinicians and patients with respiratory conditions on how to contribute to mitigating climate change.
Collapse
Affiliation(s)
- Zorana Jovanovic Andersen
- Section of Environment and Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| |
Collapse
|
6
|
Lin LZ, Chen JH, Yu YJ, Dong GH. Ambient air pollution and infant health: a narrative review. EBioMedicine 2023:104609. [PMID: 37169689 PMCID: PMC10363448 DOI: 10.1016/j.ebiom.2023.104609] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
The extensive evidence regarding the effects of ambient air pollution on child health is well documented, but limited review summarized their health effects during infancy. Symptoms or health conditions attributed to ambient air pollution in infancy could result in the progression of severe diseases during childhood. Here, we reviewed previous empirical epidemiological studies and/or reviews for evaluating the linkages between ambient air pollution and various infant outcomes including adverse birth outcomes, infant morbidity and mortality, early respiratory health, early allergic symptoms, early neurodevelopment, early infant growth and other relevant outcomes. Patterns of the associations varied by different pollutants (i.e., particles and gaseous pollutants), exposure periods (i.e., pregnancy and postpartum) and exposure lengths (i.e., long-term and short-term). Protection of infant health requires that paediatricians, researchers, and policy makers understand to what extent infants are affected by ambient air pollution, and a call for action is still necessary to reduce ambient air pollution.
Collapse
Affiliation(s)
- Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jin-Hui Chen
- School of Public Policy and Management, Tsinghua University, Beijing, 100084, China; High-Tech Research and Development Center, Ministry of Science and Technology, Beijing, 100044, China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
7
|
He S, Klevebro S, Baldanzi G, Pershagen G, Lundberg B, Eneroth K, Hedman AM, Andolf E, Almqvist C, Bottai M, Melén E, Gruzieva O. Ambient air pollution and inflammation-related proteins during early childhood. ENVIRONMENTAL RESEARCH 2022; 215:114364. [PMID: 36126692 DOI: 10.1016/j.envres.2022.114364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIM Experimental studies show that short-term exposure to air pollution may alter cytokine concentrations. There is, however, a lack of epidemiological studies evaluating the association between long-term air pollution exposure and inflammation-related proteins in young children. Our objective was to examine whether air pollution exposure is associated with inflammation-related proteins during the first 2 years of life. METHODS In a pooled analysis of two birth cohorts from Stockholm County (n = 158), plasma levels of 92 systemic inflammation-related proteins were measured by Olink Proseek Multiplex Inflammation panel at 6 months, 1 year and 2 years of age. Time-weighted average exposure to particles with an aerodynamic diameter of <10 μm (PM10), <2.5 μm (PM2.5), and nitrogen dioxide (NO2) at residential addresses from birth and onwards was estimated via validated dispersion models. Stratified by sex, longitudinal cross-referenced mixed effect models were applied to estimate the overall effect of preceding air pollution exposure on combined protein levels, "inflammatory proteome", over the first 2 years of life, followed by cross-sectional protein-specific bootstrapped quantile regression analysis. RESULTS We identified significant longitudinal associations of inflammatory proteome during the first 2 years of life with preceding PM2.5 exposure, while consistent associations with PM10 and NO2 across ages were only observed among girls. Subsequent protein-specific analyses revealed significant associations of PM10 exposure with an increase in IFN-gamma and IL-12B in boys, and a decrease in IL-8 in girls at different percentiles of proteins levels, at age 6 months. Several inflammation-related proteins were also significantly associated with preceding PM10, PM2.5 and NO2 exposures, at ages 1 and 2 years, in a sex-specific manner. CONCLUSIONS Ambient air pollution exposure influences inflammation-related protein levels already during early childhood. Our results also suggest age- and sex-specific differences in the impact of air pollution on children's inflammatory profiles.
Collapse
Affiliation(s)
- Shizhen He
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Susanna Klevebro
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Gabriel Baldanzi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Björn Lundberg
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Kristina Eneroth
- Environment and Health Administration, SLB-analys, Stockholm, Sweden
| | - Anna M Hedman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ellika Andolf
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Matteo Bottai
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| |
Collapse
|