1
|
Comparison of prolonged low-frequency force depression assessed using isometric torque and isotonic power following a dynamic fatiguing task. Eur J Appl Physiol 2022; 122:2597-2606. [PMID: 36098858 DOI: 10.1007/s00421-022-05042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Prolonged low-frequency force depression (PLFFD) occurs following both dynamic and static fatiguing tasks, but it has been assessed predominately using measures of isometric torque. However, it is unknown whether PLFFD induced during dynamic tasks is adequately characterized by isometric torque, which excludes velocity and power. The purpose of this study was to compare PLFFD assessed using isometric torque and isotonic power following a concentric fatiguing task. METHODS Young (18-31 years) males (n = 9) and females (n = 4) performed isotonic plantar flexion contractions until a ~ 75% reduction in peak power. Isotonic and isometric contractions were electrically evoked at 10 Hz and 50 Hz via tibial nerve stimulation. Isotonic and isometric PLFFD was assessed as the ratio of 10 to 50 Hz for power and torque, respectively. Recovery was assessed immediately, and at 2.5, 5, 10, 20, and 30 min after task termination. RESULTS Relative to baseline, 10:50 Hz ratio assessed using isotonic power was reduced more than isometric torque (30 min 41 ± 17 vs. 25 ± 12% reduction, p = 0.001); however, both contraction modes displayed similar trajectories throughout recovery (p = 0.906). The larger reduction in isotonic 10:50 Hz ratio was due to greater impairments in 10 Hz power compared to 10 Hz isometric torque (30 min 38 ± 20 vs. 21 ± 11% reduction, p < 0.001). CONCLUSION The similar trajectories of 10:50 Hz ratios throughout recovery indicate that PLFFD can be adequately characterized using either isometric torque or isotonic power.
Collapse
|
2
|
Zero AM, Paris MT, Rice CL. Frequency dependent coexistence of muscle fatigue and potentiation assessed by concentric isotonic contractions in human plantar flexors. J Appl Physiol (1985) 2022; 133:490-505. [PMID: 35796610 DOI: 10.1152/japplphysiol.00214.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose was to investigate whether post-activation potentiation (PAP) mitigates power (i.e., torque x angular velocity) loss during dynamic fatiguing contractions and subsequent recovery by enhancing either muscle torque or angular velocity in human plantar flexors. In 12 participants, electrically stimulated (1, 10 and 50 Hz) dynamic contractions were done during a voluntary isotonic fatiguing protocol (20 and 50% voluntary decreases) until a 75% loss in voluntary peak power, and throughout 30 minutes of recovery. At the initial portion of fatigue (20% decrease), power responses of evoked low frequencies (1 and 10 Hz) were enhanced due to PAP (156 and 137%, respectively, P<0.001), while voluntary maximal efforts were depressed due to fatiguing mechanisms. Following the fatiguing task, prolonged low-frequency force depression (PLFFD) was evident by reduced 10:50 Hz peak power ratios (21 - 24%) from 3-min onwards during the 30-min recovery (P<0.005). Inducing PAP with maximal voluntary contractions during PLFFD enhanced the peak power responses of low frequencies (1 and 10 Hz) by 128 - 160 %, P<0.01. This PAP response mitigated the effects of PLFFD as the 1:50 (P<0.05) and 10:50 (P>0.4) Hz peak power ratios were greater or not different from the pre-fatigue values. Additionally, PAP enhanced peak torque more than peak angular velocity during both baseline and fatigue measurements (P<0.03). These results indicate that PAP can ameliorate PLFFD acutely when evaluated during concentric isotonic contractions and that peak torque is enhanced to a greater degree compared to peak angular velocity at baseline and in a fatigued state.
Collapse
Affiliation(s)
- Alexander M Zero
- School of Kinesiology, Faculty of Health Sciences, grid.39381.30Western University, London, ON, Canada
| | - Michael T Paris
- School of Kinesiology, Faculty of Health Sciences, grid.39381.30Western University, London, ON, Canada
| | - Charles L Rice
- Department of Anatomy and Cell Biology, grid.443228.bWestern University, London, Ontario, Canada
| |
Collapse
|
3
|
Seow KN, Seow CY. Molecular Events of the Crossbridge Cycle Reflected in the Force–Velocity Relationship of Activated Muscle. Front Physiol 2022; 13:846284. [PMID: 35360243 PMCID: PMC8960716 DOI: 10.3389/fphys.2022.846284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Muscles convert chemical energy to mechanical work. Mechanical performance of a muscle is often assessed by the muscle’s ability to shorten and generate power over a range of loads or forces, characterized by the force–velocity and force–power relationships. The hyperbolic force–velocity relationship of muscle, for a long time, has been regarded as a pure empirical description of the force–velocity data. Connections between mechanical manifestation in terms of force–velocity properties and the kinetics of the crossbridge cycle have only been established recently. In this review, we describe how the model of Huxley’s crossbridge kinetics can be transformed to the hyperbolic Hill equation, and link the changes in force–velocity properties to molecular events within the crossbridge cycle driven by ATP hydrolysis. This allows us to reinterpret some findings from previous studies on experimental interventions that altered the force–velocity relationship and gain further insight into the molecular mechanisms of muscle contraction under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Kathryn N. Seow
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Chun Y. Seow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, Providence Health Care/St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Chun Y. Seow,
| |
Collapse
|
4
|
Erdogan C. Improvement of physical training by performance-enhancing substances. Acta Physiol (Oxf) 2020; 230:e13517. [PMID: 32491268 DOI: 10.1111/apha.13517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cem Erdogan
- Institute of Vegetative Physiology Charité – Universitätsmedizin Berlincorporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| |
Collapse
|
5
|
Degens H, Jones DA. Are Force Enhancement after Stretch and Muscle Fatigue Due to Effects of Elevated Inorganic Phosphate and Low Calcium on Cross Bridge Kinetics? ACTA ACUST UNITED AC 2020; 56:medicina56050249. [PMID: 32443826 PMCID: PMC7279286 DOI: 10.3390/medicina56050249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 11/20/2022]
Abstract
Background and Objectives: Muscle fatigue is characterised by (1) loss of force, (2) decreased maximal shortening velocity and (3) a greater resistance to stretch that could be due to reduced intracellular Ca2+ and increased Pi, which alter cross bridge kinetics. Materials and Methods: To investigate this, we used (1) 2,3-butanedione monoxime (BDM), believed to increase the proportion of attached but non-force-generating cross bridges; (2) Pi that increases the proportion of attached cross bridges, but with Pi still attached; and (3) reduced activating Ca2+. We used permeabilised rat soleus fibres, activated with pCa 4.5 at 15 °C. Results: The addition of 1 mM BDM or 15 mM Pi, or the lowering of the Ca2+ to pCa 5.5, all reduced the isometric force by around 50%. Stiffness decreased in proportion to isometric force when the fibres were activated at pCa 5.5, but was well maintained in the presence of Pi and BDM. Force enhancement after a stretch increased with the length of stretch and Pi, suggesting a role for titin. Maximum shortening velocity was reduced by about 50% in the presence of BDM and pCa 5.5, but was slightly increased by Pi. Neither decreasing Ca2+ nor increasing Pi alone mimicked the effects of fatigue on muscle contractile characteristics entirely. Only BDM elicited a decrease of force and slowing with maintained stiffness, similar to the situation in fatigued muscle. Conclusions: This suggests that in fatigue, there is an accumulation of attached but low-force cross bridges that cannot be the result of the combined action of reduced Ca2+ or increased Pi alone, but is probably due to a combination of factors that change during fatigue.
Collapse
Affiliation(s)
- Hans Degens
- Department of Life Sciences, Manchester Metropolitan University, Research Centre for Musculoskeletal Sciences & Sport Medicine, Manchester M1 5GD, UK;
- Institute of Sport Science and Innovations, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
- Correspondence: ; Tel.: +44-161-247-5686
| | - David A. Jones
- Department of Life Sciences, Manchester Metropolitan University, Research Centre for Musculoskeletal Sciences & Sport Medicine, Manchester M1 5GD, UK;
| |
Collapse
|
6
|
Kristensen AM, MacDougall KB, MacIntosh BR, Overgaard K. Is curvature of the force-velocity relationship affected by oxygen availability? Evidence from studies in ex vivo and in situ rat muscles. Pflugers Arch 2020; 472:597-608. [PMID: 32415461 DOI: 10.1007/s00424-020-02390-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 11/30/2022]
Abstract
The power of shortening contractions in skeletal muscle is determined by the force-velocity relationship. Fatigue has been reported to either increase or decrease the force-velocity curvature depending on experimental circumstances. These discrepant findings may be related to experimental differences in oxygen availability. We therefore investigated how the curvature of the force-velocity relationship in soleus and gastrocnemius rat muscles is affected during fatigue, in both an ex vivo setup without an intact blood perfusion and in an in situ setup with an intact blood perfusion. Furthermore, we investigated the effect of reduced oxygen concentrations and reduced diffusion distance on the curvature of the force-velocity relationship in ex vivo muscles, where muscle oxygen uptake relies on diffusion from the incubation medium. Muscles were electrically stimulated to perform repeated shortening contractions and force-velocity curves were determined in rested and fatigued conditions. The curvature increased during fatigue in the soleus muscles (both in situ and ex vivo), and decreased for the gastrocnemius muscles (in situ) or remained unchanged (ex vivo). Furthermore, under ex vivo conditions, neither reduced oxygen concentrations nor reduced diffusion distance conferred any substantial effect on the force-velocity curvature. In contrast, reduced oxygen availability and increased diffusion distance did increase the loss of maximal power during fatigue, mainly due to additional decreases in isometric force. We conclude that oxygen availability does not influence the fatigue-induced changes in force-velocity curvature. Rather, the observed variable fatigue profiles with regard to changes in curvature seem to be linked to the muscle fiber-type composition.
Collapse
Affiliation(s)
| | - K B MacDougall
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - B R MacIntosh
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - K Overgaard
- Department of Public Health, Aarhus University, Dalgas Avenue 4, Aarhus C, 8000, Aarhus, Denmark
| |
Collapse
|
7
|
Kristensen AM, Nielsen OB, Pedersen TH, Overgaard K. Fatiguing stimulation increases curvature of the force-velocity relationship in isolated fast-twitch and slow-twitch rat muscles. ACTA ACUST UNITED AC 2019; 222:jeb.204545. [PMID: 31292165 DOI: 10.1242/jeb.204545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/04/2019] [Indexed: 01/14/2023]
Abstract
In skeletal muscles, the ability to generate power is reduced during fatigue. In isolated muscles, maximal power can be calculated from the force-velocity relationship. This relationship is well described by the Hill equation, which contains three parameters: (1) maximal isometric force, (2) maximum contraction velocity and (3) curvature. Here, we investigated the hypothesis that a fatigue-induced loss of power is associated with changes in curvature of the force-velocity curve in slow-twitch muscles but not in fast-twitch muscles during the development of fatigue. Isolated rat soleus (slow-twitch) and extensor digitorum longus (EDL; fast-twitch) muscles were incubated in Krebs-Ringer solution at 30°C and stimulated electrically at 60 Hz (soleus) and 150 Hz (EDL) to perform a series of concentric contractions to fatigue. Force-velocity data were fitted to the Hill equation, and curvature was determined as the ratio of the curve parameters a/F 0 (inversely related to curvature). At the end of the fatiguing protocol, maximal power decreased by 58±5% in the soleus and 69±4% in the EDL compared with initial values in non-fatigued muscles. At the end of the fatiguing sequence, curvature increased as judged from the decrease in a/F 0 by 81±20% in the soleus and by 31±12% in the EDL. However, during the initial phases of fatiguing stimulation, we observed a small decrease in curvature in the EDL, but not in the soleus, which may be a result of post-activation potentiation. In conclusion, fatigue-induced loss of power is strongly associated with an increased curvature of the force-velocity relationship, particularly in slow-twitch muscles.
Collapse
Affiliation(s)
| | - Ole B Nielsen
- Department of Public Health, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Thomas H Pedersen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Kristian Overgaard
- Department of Public Health, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Alcazar J, Navarro‐Cruz R, Rodriguez‐Lopez C, Vila‐Maldonado S, Ara I, Alegre LM. The double-hyperbolic force-velocity relationship in humans. Acta Physiol (Oxf) 2019; 226:e13165. [PMID: 30040172 DOI: 10.1111/apha.13165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/09/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Julian Alcazar
- GENUD Toledo Research Group Universidad de Castilla‐La Mancha Toledo Spain
- CIBER of Frailty and Healthy Aging (CIBERFES) Madrid Spain
| | - Roberto Navarro‐Cruz
- GENUD Toledo Research Group Universidad de Castilla‐La Mancha Toledo Spain
- CIBER of Frailty and Healthy Aging (CIBERFES) Madrid Spain
| | - Carlos Rodriguez‐Lopez
- GENUD Toledo Research Group Universidad de Castilla‐La Mancha Toledo Spain
- CIBER of Frailty and Healthy Aging (CIBERFES) Madrid Spain
| | - Sara Vila‐Maldonado
- GENUD Toledo Research Group Universidad de Castilla‐La Mancha Toledo Spain
- CIBER of Frailty and Healthy Aging (CIBERFES) Madrid Spain
| | - Ignacio Ara
- GENUD Toledo Research Group Universidad de Castilla‐La Mancha Toledo Spain
- CIBER of Frailty and Healthy Aging (CIBERFES) Madrid Spain
| | - Luis M. Alegre
- GENUD Toledo Research Group Universidad de Castilla‐La Mancha Toledo Spain
- CIBER of Frailty and Healthy Aging (CIBERFES) Madrid Spain
| |
Collapse
|
9
|
Krüger RL, Aboodarda SJ, Jaimes LM, MacIntosh BR, Samozino P, Millet GY. Fatigue and recovery measured with dynamic properties versus isometric force: effects of exercise intensity. ACTA ACUST UNITED AC 2019; 222:jeb.197483. [PMID: 30890621 DOI: 10.1242/jeb.197483] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/13/2019] [Indexed: 11/20/2022]
Abstract
Although fatigue can be defined as an exercise-related decrease in maximal power or isometric force, most studies have assessed only isometric force. The main purpose of this experiment was to compare dynamic measures of fatigue [maximal torque (T max), maximal velocity (V max) and maximal power (P max)] with measures associated with maximal isometric force [isometric maximal voluntary contraction (IMVC) and maximal rate of force development (MRFD)] 10 s after different fatiguing exercises and during the recovery period (1-8 min after). Ten young men completed six experimental sessions (3 fatiguing exercises×2 types of fatigue measurements). The fatiguing exercises were: 30 s all-out intensity (AI), 10 min at severe intensity (SI) and 90 min at moderate intensity (MI). Relative P max decreased more than IMVC after AI exercise (P=0.005) while the opposite was found after SI (P=0.005) and MI tasks (P<0.001). There was no difference between the decrease in IMVC and T max after the AI exercise, but IMVC decreased more than T max immediately following and during the recovery from the SI (P=0.042) and MI exercises (P<0.001). Depression of MRFD was greater than V max after all fatiguing exercises and during recovery (all P<0.05). Despite the general definition of fatigue, isometric assessment of fatigue is not interchangeable with dynamic assessment following dynamic exercises with large muscle mass of different intensities, i.e. the results from isometric function cannot be used to estimate dynamic function and vice versa. This implies different physiological mechanisms for the various measures of fatigue.
Collapse
Affiliation(s)
- Renata L Krüger
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Saied Jalal Aboodarda
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Libia Marcela Jaimes
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Brian R MacIntosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Pierre Samozino
- Univ Savoie Mont Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-73000 Chambéry, France
| | - Guillaume Y Millet
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| |
Collapse
|
10
|
Devrome AN, MacIntosh BR. Force-velocity relationship during isometric and isotonic fatiguing contractions. J Appl Physiol (1985) 2018; 125:706-714. [PMID: 29856265 DOI: 10.1152/japplphysiol.01119.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fatiguing contractions change the force-velocity relationship, but assessment of this relationship in fatigue has usually been obtained after isometric contractions. We studied fatigue caused by isometric or isotonic contractions, by assessment of the force-velocity relationship while the contractions maintaining fatigue were continued. This approach allowed determination of the force-velocity relationship during a steady condition of fatigue. We used the in situ rat medial gastrocnemius muscle, a physiologically relevant preparation. Intermittent (1/s) stimulation at 170 Hz for 100 ms resulted in decreased isometric force to ~35% of initial or decreased peak velocity of shortening in dynamic contractions to ~45% of initial. Dynamic contractions resulted in a transient initial increase in velocity, followed by a rapid decline until a reasonably steady level was maintained. Data were fit to the classic Hill equation for determination of the force-velocity relationship. Isometric and dynamic contractions resulted in similar decreases in maximal isometric force and peak power. Only Vmax was different between the types of contraction ( P < 0.005) with greater decrease in Vmax during isotonic contractions to 171.7 ± 7.3 mm/s than during isometric contractions to 208.8 mm/s. Curvature indicated by a/Po (constants from fit to Hill equation) changed from 0.45 ± 0.04 to 0.71 ± 0.11 during isometric contractions and from 0.51 ± 0.04 to 0.85 ± 0.18 during isotonic contractions. Recovery was incomplete 45 min after stopping the intermittent contractions. At this time, recovery of low-frequency isometric force was substantially less after isometric contractions, implicating force during intermittent contractions as a determining factor with this measure of fatigue. NEW & NOTEWORTHY The force-velocity relationship was captured while fatigue was maintained at a constant level during isometric and dynamic contractions. The curvature of the force-velocity relationship was less curved during fatigue than prefatigued, but within 45 min this recovered. Low-frequency fatigue persisted with greater depression of low-frequency force after isometric contractions, possibly because of higher force contractions during intermittent contractions.
Collapse
Affiliation(s)
- Andrea N Devrome
- Faculty of Kinesiology, University of Calgary , Calgary, AB , Canada
| | - Brian R MacIntosh
- Faculty of Kinesiology, University of Calgary , Calgary, AB , Canada
| |
Collapse
|