1
|
Migliorini F, Cocconi F, Schäfer L, Simeone F, Jeyaraman M, Maffulli N. Pharmacological management of secondary chronic spinal cord injury: a systematic review. Br Med Bull 2024; 151:49-68. [PMID: 39222962 DOI: 10.1093/bmb/ldae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/10/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Spinal cord injury (SCI) may bring lifelong consequences for affected patients and a high financial burden to the health care system. SOURCE OF DATA Published peer-reviewed scientific articles identified from EMBASE, Google Scholar, PubMed and Scopus. AREAS OF AGREEMENT Surgery and blood pressure management are the main targets in acute SCI to avoid secondary damage. AREAS OF CONTROVERSY The management of secondary chronic SCI is challenging, with unpredictable outcomes. GROWING POINTS Given the lack of consensus on pharmacological therapy for acute and secondary chronic SCI, the present study analyses the currently available drugs and treatment options to manage secondary chronic SCI. AREAS TIMELY FOR DEVELOPING RESEARCH Different approaches exist for the pharmacological management of secondary chronic SCI. One of the most investigated drugs, 4-aminopyridine, improves central motor conduction and shows improvement in neurological signs. Positive results in different areas have been observed in patients receiving the anti-spastic drugs tizanidine and baclofen or Granulocyte colony-stimulating factor. Growth hormone showed only minimal or no significant effects, and the therapy of secondary chronic SCI with riluzole has been poorly researched to date.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Via del Casale di S. Pio V, 44, 00165 Rome, Italy
- Department of Orthopaedics and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), via Lorenz Boelher 7, 39100 Bolzano, Italy
| | - Federico Cocconi
- Department of Orthopaedics and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), via Lorenz Boelher 7, 39100 Bolzano, Italy
| | - Luise Schäfer
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Via del Casale di S. Pio V, 44, 00165 Rome, Italy
| | - Francesco Simeone
- Department of Orthopaedics and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), via Lorenz Boelher 7, 39100 Bolzano, Italy
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Poonamallee High Rd, Velappanchavadi, Chennai 600077, Tamil Nadu, India
| | - Nicola Maffulli
- Department of Medicine and Psychology, University of Rome La Sapienza, via dei Marsi 78, 00185 Rome, Italy
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Hornbeam Building, Keele ST5 5BG, UK
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, E1 4DG London, UK
| |
Collapse
|
2
|
Chen J, Xiang Z, Zhang Z, Yang Y, Shu K, Lei T. Acromegalic Rat Model Presented Cognitive Impairments and Tau Hyperphosphorylation in the Hippocampus. Neuroendocrinology 2024; 114:577-588. [PMID: 38368872 PMCID: PMC11151995 DOI: 10.1159/000537813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Acromegaly patients, in addition to the most prominent physical and endocrine changes, also exhibit a higher risk of cognitive dysfunction. However, the reasons and mechanisms underlying cognitive impairments in acromegaly patients remain unknown. METHODS Acromegalic rats were induced by subcutaneous injection of tumor cells, with continuous monitoring of the body weight and hormones to confirm the occurrence of acromegaly. Behavioral assessments, including open field test, novel object recognition test, and Barnes maze test, were conducted to evaluate the animals' cognitive function. Western blotting, immunohistochemistry, and immunofluorescence techniques were employed to examine changes in the hippocampal tau protein, Aβ, and associated signaling pathways. RESULTS The tumor cells secreting growth hormone increased the secretion of growth hormone, resulting in changes in body size and endocrine functions, thus causing acromegaly. The acromegaly model showed deficiencies in working memory and spatial memory. Hyperphosphorylation of tau protein was observed in the hippocampus of the acromegaly model, but no Aβ deposition was observed. The acromegaly model exhibits hippocampal growth hormone (GH) resistance, decreased expression of GH receptors, and subsequently reduced expression activity of the PI3K-Akt-GSK3β signaling pathway, which is responsible for the hyperphosphorylation of tau protein. CONCLUSION The prolonged elevation of GH and insulin-like growth factor 1 caused by acromegaly may lead to abnormalities in the SD rat's PI3K-Akt-GSK3β signaling pathway, subsequently resulting in hyperphosphorylation of the hippocampal tau protein and cognitive impairment.
Collapse
Affiliation(s)
- Juan Chen
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Zhigao Xiang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Zhang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Kodirov SA. Adam, amigo, brain, and K channel. Biophys Rev 2023; 15:1393-1424. [PMID: 37975011 PMCID: PMC10643815 DOI: 10.1007/s12551-023-01163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023] Open
Abstract
Voltage-dependent K+ (Kv) channels are diverse, comprising the classical Shab - Kv2, Shaker - Kv1, Shal - Kv4, and Shaw - Kv3 families. The Shaker family alone consists of Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv1.5, Kv1.6, and Kv1.7. Moreover, the Shab family comprises two functional (Kv2.1 and Kv2.2) and several "silent" alpha subunits (Kv2.3, Kv5, Kv6, Kv8, and Kv9), which do not generate K current. However, e.g., Kv8.1, via heteromerization, inhibits outward currents of the same family or even that of Shaw. This property of Kv8.1 is similar to those of designated beta subunits or non-selective auxiliary elements, including ADAM or AMIGO proteins. Kv channels and, in turn, ADAM may modulate the synaptic long-term potentiation (LTP). Prevailingly, Kv1.1 and Kv1.5 are attributed to respective brain and heart pathologies, some of which may occur simultaneously. The aforementioned channel proteins are apparently involved in several brain pathologies, including schizophrenia and seizures.
Collapse
Affiliation(s)
- Sodikdjon A. Kodirov
- Department of Biological Sciences, University of Texas at Brownsville, Brownsville, TX 78520 USA
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
- Instituto de Medicina Molecular, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Almazov Federal Heart, Blood and Endocrinology Centre, Saint Petersburg, 197341 Russia
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Linz, Austria
| |
Collapse
|
4
|
Zhang Y, Wei R, Ni M, Wu Q, Li Y, Ge Y, Kong X, Li X, Chen G. An enriched environment improves maternal sleep deprivation-induced cognitive deficits and synaptic plasticity via hippocampal histone acetylation. Brain Behav 2023; 13:e3018. [PMID: 37073496 PMCID: PMC10275536 DOI: 10.1002/brb3.3018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 04/20/2023] Open
Abstract
INTRODUCTION Growing evidence clearly demonstrates that maternal rodents exposure to sleep deprivation (SD) during late pregnancy impairs learning and memory in their offspring. Epigenetic mechanisms, particularly histone acetylation, are known to be involved in synaptic plasticity, learning, and memory. We hypothesize that the cognitive decline induced by SD during late pregnancy is associated with histone acetylation dysfunction, and this effect could be reversed by an enriched environment (EE). METHODS In the present study, pregnant CD-1 mice were exposed to SD during the third trimester of pregnancy. After weaning, all offspring were randomly assigned to two subgroups in either a standard environment or an EE. When offspring were 3 months old, the Morris water maze was used to evaluate hippocampal-dependent learning and memory ability. Molecular biological techniques, including western blot and real-time fluorescence quantitative polymerase chain reaction, were used to examine the histone acetylation pathway and synaptic plasticity markers in the hippocampus of offspring. RESULTS The results showed that the following were all reversed by EE treatment: maternal SD (MSD)-induced cognitive deficits including spatial learning and memory; histone acetylation dysfunction including increased histone deacetylase 2 (HDAC2) and decreased histone acetyltransferase (CBP), and the acetylation levels of H3K9 and H4K12; synaptic plasticity dysfunction including decreased brain-derived neurotrophic factor; and postsynaptic density protein-95. CONCLUSIONS Our findings suggested that MSD could damage learning ability and memory in offspring via the histone acetylation pathway. This effect could be reversed by EE treatment.
Collapse
Affiliation(s)
- Yue‐Ming Zhang
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Ru‐Meng Wei
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Ming‐Zhu Ni
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Qi‐Tao Wu
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Yun Li
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Yi‐Jun Ge
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Xiao‐Yi Kong
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Xue‐Yan Li
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Gui‐Hai Chen
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| |
Collapse
|
5
|
Williams HC, Carlson SW, Saatman KE. A role for insulin-like growth factor-1 in hippocampal plasticity following traumatic brain injury. VITAMINS AND HORMONES 2022; 118:423-455. [PMID: 35180936 DOI: 10.1016/bs.vh.2021.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Traumatic brain injury (TBI) initiates a constellation of secondary injury cascades, leading to neuronal damage and dysfunction that is often beyond the scope of endogenous repair mechanisms. Cognitive deficits are among the most persistent morbidities resulting from TBI, necessitating a greater understanding of mechanisms of posttraumatic hippocampal damage and neuroplasticity and identification of therapies that improve recovery by enhancing repair pathways. Focusing here on hippocampal neuropathology associated with contusion-type TBIs, the impact of brain trauma on synaptic structure and function and the process of adult neurogenesis is discussed, reviewing initial patterns of damage as well as evidence for spontaneous recovery. A case is made that insulin-like growth factor-1 (IGF-1), a growth-promoting peptide synthesized in both the brain and the periphery, is well suited to augment neuroplasticity in the injured brain. Essential during brain development, multiple lines of evidence delineate roles in the adult brain for IGF-1 in the maintenance of synapses, regulation of neurotransmission, and modulation of forms of synaptic plasticity such as long-term potentiation. Further, IGF-1 enhances adult hippocampal neurogenesis though effects on proliferation and neuronal differentiation of neural progenitor cells and on dendritic growth of newly born neurons. Post-injury administration of IGF-1 has been effective in rodent models of TBI in improving learning and memory, attenuating death of mature hippocampal neurons and promoting neurogenesis, providing critical proof-of-concept data. More studies are needed to explore the effects of IGF-1-based therapies on synaptogenesis and synaptic plasticity following TBI and to optimize strategies in order to stimulate only appropriate, functional neuroplasticity.
Collapse
Affiliation(s)
- Hannah C Williams
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Shaun W Carlson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kathryn E Saatman
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
6
|
Li T, Xie R, Zhao J, Xu H, Cui Y, Sun C, Wang C, Liu Y. Effectiveness of Recombinant Human Growth Hormone Therapy for Children With Phelan-McDermid Syndrome: An Open-Label, Cross-Over, Preliminary Study. Front Psychiatry 2022; 13:763565. [PMID: 35250656 PMCID: PMC8888442 DOI: 10.3389/fpsyt.2022.763565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/17/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS), also known as the 22q13. 3 deletion syndrome, is a rare neurodevelopmental syndrome with approximately 2,800 patients reported worldwide. Previous pilot study demonstrated that IGF-1 could significantly improve in both social impairment and restrictive behaviors of the patients. However, most of the patients in the developing countries like China cannot afford the high cost of using IGF-1. Our research team speculated that rhGH might serve as a low-cost and more accessible treatment for PMS. Therefore, the purpose of this open-label, cross-over, pilot study was to further investigate the safety and efficiency of rhGH in patients with PMS. METHODS A total of six children with PMS were enrolled in in this open-label, cross-over, pilot study. The children were randomly divided into two different groups. Group A received placebo followed by rhGH, while group B was treated with rhGH first. Neuropsychological and behavior assessments of the patients were performed before the stage I of study and 3 months after the intervention of stage I. After a 4-week period of washout, these assessments were conducted again before the stage II of study and 3 months after the intervention of stage II. Serum insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding-protein (IGFBP)-3 were also evaluated monthly during the intervention phases of the pilot study. RESULTS Compared with the placebo, rhGH treatment significantly decreased subscale scores of GDS (P < 0.0085) and trended to improve the total scores of GDS (P < 0.05), while the total scores and subscale scores of SC-ABC significantly decreased (P < 0.0085) following 3-months rhGH treatment. The similar results were also observed in comparison with baseline. Compared with the baseline, the level of serum IGF-1 and IGFBP-3 increased significantly (P < 0.05) following 3-months rhGH treatment, while the placebo group had no significant impact on serum IGF-1 and IGFBP-3 (P > 0.05). One child developed skin allergy the day after the first rhGH treatment, which were resolved later. CONCLUSIONS In summary, this pilot study involving six PMS children patients reveals that rhGH has a positive treatment effect on PMS. These results encourage the undertaking of a large, randomized placebo-controlled trial to conclusively prove rhGH efficacy and tolerability in PMS, thereby promoting it as a low-cost, more accessible treatment for PMS, as compared to IGF-1.
Collapse
Affiliation(s)
- TianXiao Li
- Affiliated Hospital of JiangNan University, Wuxi, China
| | - Ruijin Xie
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jinling Zhao
- Affiliated Hospital of JiangNan University, Wuxi, China
| | - Hua Xu
- Affiliated Hospital of JiangNan University, Wuxi, China
| | - Ying Cui
- Affiliated Hospital of JiangNan University, Wuxi, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Chunhong Wang
- Affiliated Hospital of JiangNan University, Wuxi, China
| | - Yueying Liu
- Affiliated Hospital of JiangNan University, Wuxi, China
| |
Collapse
|
7
|
Esclarin-Ruz A, Rodríguez-Carrión I, Ceruelo-Abajo S, Palazón-Garcia R, Ayuga-Loro F, Carrasco-Lopez C, Alcobendas-Maestro M, Casado-Lopez RM, Talavera-Diaz F, Soto-León V, Campolo M, Romero-Ganuza FJ, Florensa-Vila J, Garcia-Marco D, Rotondi M, Oliviero A. Phase II/III placebo-controlled randomized trial of safety and efficacy of growth hormone treatment in incomplete chronic traumatic spinal cord injury. Spinal Cord 2021; 59:917-924. [PMID: 34226654 DOI: 10.1038/s41393-021-00662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN This is a double blind phase II/III placebo-controlled randomized trial of the safety and efficacy of GH treatment in incomplete chronic traumatic spinal cord injury. OBJECTIVE The aim of this study was to investigate the possibility to use exogenous GH administration for motor recovery in chronic traumatic incomplete human SCI. The objectives were to establish safety and efficacy of a combined treatment of subcutaneous GH (or placebo) and rehabilitation in this population. SETTING Hospital Nacional de Parapléjicos METHODS: The pharmacological treatment was a subcutaneous daily dose of growth hormone (GH, Genotonorm 0.4 mg, Pfizer Pharmaceuticals) or placebo for one year. The pharmacological treatment was performed, during the first six months under hospitalization and supervised rehabilitation. RESULTS The main findings were that the combined treatment of GH plus rehabilitation treatment is feasible and safe, and that GH but not placebo increases the ISNCSCI motor score. On the other hand, the motor-score increment was marginal (after one-year combined treatment, the mean increment of the motor-score was around 2.5 points). Moreover, we found that intensive and long-lasting rehabilitation program per se increases the functional outcome of SCI individuals (measured using SCIM III and WISCI II). CONCLUSIONS It is important to highlight that our aim was to propose GH as a possible treatment to improve motor functions in incomplete SCI individuals. At least with the doses we used, we think that the therapeutic effects of this approach are not clinically relevant in most subjects with SCI.
Collapse
Affiliation(s)
- Ana Esclarin-Ruz
- Physical and Rehabilitation Medicine Department, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | | | - Silvia Ceruelo-Abajo
- Physical and Rehabilitation Medicine Department, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Ramiro Palazón-Garcia
- Physical and Rehabilitation Medicine Department, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | | | | | - Monica Alcobendas-Maestro
- Physical and Rehabilitation Medicine Department, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Rosa M Casado-Lopez
- Physical and Rehabilitation Medicine Department, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Francisco Talavera-Diaz
- Physical and Rehabilitation Medicine Department, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Vanesa Soto-León
- FENNSI group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Michela Campolo
- FENNSI group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | | | - Jose Florensa-Vila
- Radiology Department, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | | | - Mario Rotondi
- Unit of Internal Medicine and Endocrinology, ICS-Maugeri I.R.C.C.S., Laboratory for Endocrine Disruptors and University of Pavia, Pavia, Italy
| | - Antonio Oliviero
- FENNSI group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain.
| |
Collapse
|
8
|
Persson PB, Persson AB. Growth. Acta Physiol (Oxf) 2021; 231:e13617. [PMID: 33484232 DOI: 10.1111/apha.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Pontus B. Persson
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthInstitute of Vegetative Physiology Berlin Germany
| | - Anja B. Persson
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| |
Collapse
|
9
|
Nyberg F, Hallberg M. Growing knowledge: How growth hormone improves learning. Acta Physiol (Oxf) 2020; 229:e13474. [PMID: 32271983 DOI: 10.1111/apha.13474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Fred Nyberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mathias Hallberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Nylander E, Zelleroth S, Stam F, Nyberg F, Grönbladh A, Hallberg M. Growth hormone increases dendritic spine density in primary hippocampal cell cultures. Growth Horm IGF Res 2020; 50:42-47. [PMID: 31862540 DOI: 10.1016/j.ghir.2019.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Growth hormone (GH) is widely known for its peripheral effects during growth and development. However, numerous reports also suggest that GH exert pro-cognitive, restorative, and protective properties in the brain. In in vitro studies, the detection of dendritic spines, small protrusions extending from axons, can act as a marker for cognition-related function as spine formation is considered to be associated with learning and memory. Here we show that an acute 24-hour treatment of GH can increase dendritic spine density in primary hippocampal cell cultures. DESIGN Primary hippocampal cells were harvested from embryonic Wistar rats and cultured for 14 days. Cells were treated with supra-physiological doses of GH (10-1000 nM) and subjected to a high-throughput screening protocol. Images were acquired and analyzed using automated image analysis and the number of spines, spines per neurite length, neurite length, and mean area of spines, was reported. RESULTS GH treatment (1000 nM) increased the number of dendritic spines by 83% and spines per neurite length by 82% when compared to control. For comparison BDNF, a known inducer of spine densities, produced statistically non-significant increase in this setting. CONCLUSION The results was found significant using the highest supra-physiological dose of GH, and the present study further confirms a potential role of the hormone in the treatment of cognitive dysfunction.
Collapse
Affiliation(s)
- Erik Nylander
- Uppsala University, The Beijer Laboratory, Department of Pharmaceutical Biosciences, Uppsala, Sweden.
| | - Sofia Zelleroth
- Uppsala University, The Beijer Laboratory, Department of Pharmaceutical Biosciences, Uppsala, Sweden
| | - Frida Stam
- Uppsala University, The Beijer Laboratory, Department of Pharmaceutical Biosciences, Uppsala, Sweden
| | - Fred Nyberg
- Uppsala University, The Beijer Laboratory, Department of Pharmaceutical Biosciences, Uppsala, Sweden
| | - Alfhild Grönbladh
- Uppsala University, The Beijer Laboratory, Department of Pharmaceutical Biosciences, Uppsala, Sweden
| | - Mathias Hallberg
- Uppsala University, The Beijer Laboratory, Department of Pharmaceutical Biosciences, Uppsala, Sweden.
| |
Collapse
|
11
|
Martinez-Moreno CG, Epardo D, Balderas-Márquez JE, Fleming T, Carranza M, Luna M, Harvey S, Arámburo C. Regenerative Effect of Growth Hormone (GH) in the Retina after Kainic Acid Excitotoxic Damage. Int J Mol Sci 2019; 20:E4433. [PMID: 31509934 PMCID: PMC6770150 DOI: 10.3390/ijms20184433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
In addition to its role as an endocrine messenger, growth hormone (GH) also acts as a neurotrophic factor in the central nervous system (CNS), whose effects are involved in neuroprotection, axonal growth, and synaptogenic modulation. An increasing amount of clinical evidence shows a beneficial effect of GH treatment in patients with brain trauma, stroke, spinal cord injury, impaired cognitive function, and neurodegenerative processes. In response to injury, Müller cells transdifferentiate into neural progenitors and proliferate, which constitutes an early regenerative process in the chicken retina. In this work, we studied the long-term protective effect of GH after causing severe excitotoxic damage in the retina. Thus, an acute neural injury was induced via the intravitreal injection of kainic acid (KA, 20 µg), which was followed by chronic administration of GH (10 injections [300 ng] over 21 days). Damage provoked a severe disruption of several retinal layers. However, in KA-damaged retinas treated with GH, we observed a significant restoration of the inner plexiform layer (IPL, 2.4-fold) and inner nuclear layer (INL, 1.5-fold) thickness and a general improvement of the retinal structure. In addition, we also observed an increase in the expression of several genes involved in important regenerative pathways, including: synaptogenic markers (DLG1, NRXN1, GAP43); glutamate receptor subunits (NR1 and GRIK4); pro-survival factors (BDNF, Bcl-2 and TNF-R2); and Notch signaling proteins (Notch1 and Hes5). Interestingly, Müller cell transdifferentiation markers (Sox2 and FGF2) were upregulated by this long-term chronic GH treatment. These results are consistent with a significant increase in the number of BrdU-positive cells observed in the KA-damaged retina, which was induced by GH administration. Our data suggest that GH is able to facilitate the early proliferative response of the injured retina and enhance the regeneration of neurite interconnections.
Collapse
Affiliation(s)
- Carlos G Martinez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico.
| | - David Epardo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Jerusa E Balderas-Márquez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico.
| | - Thomas Fleming
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico.
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico.
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico.
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico.
| |
Collapse
|