1
|
Mathisen AF, Legøy TA, Larsen U, Unger L, Abadpour S, Paulo JA, Scholz H, Ghila L, Chera S. The age-dependent regulation of pancreatic islet landscape is fueled by a HNF1a-immune signaling loop. Mech Ageing Dev 2024; 220:111951. [PMID: 38825059 DOI: 10.1016/j.mad.2024.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Animal longevity is a function of global vital organ functionality and, consequently, a complex polygenic trait. Yet, monogenic regulators controlling overall or organ-specific ageing exist, owing their conservation to their function in growth and development. Here, by using pathway analysis combined with wet-biology methods on several dynamic timelines, we identified Hnf1a as a novel master regulator of the maturation and ageing in the adult pancreatic islet during the first year of life. Conditional transgenic mice bearing suboptimal levels of this transcription factor in the pancreatic islets displayed age-dependent changes, with a profile echoing precocious maturation. Additionally, the comparative pathway analysis revealed a link between Hnf1a age-dependent regulation and immune signaling, which was confirmed in the ageing timeline of an overly immunodeficient mouse model. Last, the global proteome analysis of human islets spanning three decades of life largely backed the age-specific regulation observed in mice. Collectively, our results suggest a novel role of Hnf1a as a monogenic regulator of the maturation and ageing process in the pancreatic islet via a direct or indirect regulatory loop with immune signaling.
Collapse
Affiliation(s)
- Andreas Frøslev Mathisen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Aga Legøy
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ulrik Larsen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lucas Unger
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shadab Abadpour
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Norway; Institute for Surgical Research, Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Norway; Institute for Surgical Research, Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Luiza Ghila
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
2
|
Mathisen AF, Larsen U, Kavli N, Unger L, Daian LM, Vacaru AM, Vacaru AM, Herrera PL, Ghila L, Chera S. Moderate beta-cell ablation triggers synergic compensatory mechanisms even in the absence of overt metabolic disruption. Commun Biol 2024; 7:833. [PMID: 38982170 PMCID: PMC11233560 DOI: 10.1038/s42003-024-06527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Regeneration, the ability to replace injured tissues and organs, is a phenomenon commonly associated with lower vertebrates but is also observed in mammals, in specific tissues. In this study, we investigated the regenerative potential of pancreatic islets following moderate beta-cell loss in mice. Using a rapid model of moderate ablation, we observed a compensatory response characterized by transient inflammation and proliferation signatures, ultimately leading to the recovery of beta-cell identity and function. Interestingly, this proliferative response occurred independently of inflammation, as demonstrated in ablated immunodeficient mice. Furthermore, exposure to high-fat diet stimulated beta-cell proliferation but negatively impacted beta-cell function. In contrast, an equivalent slower ablation model revealed a delayed but similar proliferative response, suggesting proliferation as a common regenerative response. However, high-fat diet failed to promote proliferation in this model, indicating a differential response to metabolic stressors. Overall, our findings shed light on the complex interplay between beta-cell loss, inflammation, and stress in modulating pancreatic islet regeneration. Understanding these mechanisms could pave the way for novel therapeutic strategies based on beta-cell proliferation.
Collapse
Affiliation(s)
- Andreas Frøslev Mathisen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ulrik Larsen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Natalie Kavli
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lucas Unger
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Laura Maria Daian
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Andrei Mircea Vacaru
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Ana-Maria Vacaru
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Pedro Luis Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Luiza Ghila
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
3
|
Mathisen AF, Vacaru AM, Unger L, Lamba EM, Mardare OAM, Daian LM, Ghila L, Vacaru AM, Chera S. Molecular profiling of NOD mouse islets reveals a novel regulator of insulitis onset. Sci Rep 2024; 14:14669. [PMID: 38918575 PMCID: PMC11199597 DOI: 10.1038/s41598-024-65454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Non-obese diabetes (NOD) mice are an established, spontaneous model of type 1 diabetes in which diabetes develops through insulitis. Using next-generation sequencing, coupled with pathway analysis, the molecular fingerprint of early insulitis was mapped in a cohort of mice ranging from 4 to 12 weeks of age. The resulting dynamic timeline revealed an initial decrease in proliferative capacity followed by the emergence of an inflammatory signature between 6 and 8 weeks that increased to a regulatory plateau between 10 and 12 weeks. The inflammatory signature is identified by the activation of central immunogenic factors such as Infg, Il1b, and Tnfa, and activation of canonical inflammatory signaling. Analysis of the regulatory landscape revealed the transcription factor Atf3 as a potential novel modulator of inflammatory signaling in the NOD islets. Furthermore, the Hedgehog signaling pathway correlated with Atf3 regulation, suggesting that the two play a role in regulating islet inflammation; however, further studies are needed to establish the nature of this connection.
Collapse
Affiliation(s)
- Andreas Frøslev Mathisen
- Department of Clinical Science, Mohn Research Center for Diabetes Precision Medicine, University of Bergen, Bergen, Norway
| | - Andrei Mircea Vacaru
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Lucas Unger
- Department of Clinical Science, Mohn Research Center for Diabetes Precision Medicine, University of Bergen, Bergen, Norway
| | - Elena Mirela Lamba
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Oana-Ana-Maria Mardare
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Laura Maria Daian
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Luiza Ghila
- Department of Clinical Science, Mohn Research Center for Diabetes Precision Medicine, University of Bergen, Bergen, Norway
| | - Ana-Maria Vacaru
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania.
| | - Simona Chera
- Department of Clinical Science, Mohn Research Center for Diabetes Precision Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
4
|
Ramzy A, Saber N, Bruin JE, Thompson DM, Kim PTW, Warnock GL, Kieffer TJ. Thyroid Hormone Levels Correlate With the Maturation of Implanted Pancreatic Endoderm Cells in Patients With Type 1 Diabetes. J Clin Endocrinol Metab 2024; 109:413-423. [PMID: 37671625 PMCID: PMC10795919 DOI: 10.1210/clinem/dgad499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Macroencapsulated pancreatic endoderm cells (PECs) can reverse diabetes in rodents and preclinical studies revealed that thyroid hormones in vitro and in vivo bias PECs to differentiate into insulin-producing cells. In an ongoing clinical trial, PECs implanted in macroencapsulation devices into patients with type 1 diabetes were safe but yielded heterogeneous outcomes. Though most patients developed meal responsive C-peptide, levels were heterogeneous and explanted grafts had variable numbers of surviving cells with variable distribution of endocrine cells. METHODS We measured circulating triiodothyronine and thyroxine levels in all patients treated at 1 of the 7 sites of the ongoing clinical trial and determined if thyroid hormone levels were associated with the C-peptide or glucagon levels and cell fate of implanted PECs. RESULTS Both triiodothyronine and thyroxine levels were significantly associated with the proportion of cells that adopted an insulin-producing fate with a mature phenotype. Thyroid hormone levels were inversely correlated to circulating glucagon levels after implantation, suggesting that thyroid hormones lead PECs to favor an insulin-producing fate over a glucagon-producing fate. In mice, hyperthyroidism led to more rapid maturation of PECs into insulin-producing cells similar in phenotype to PECs in euthyroid mice. CONCLUSION These data highlight the relevance of thyroid hormones in the context of PEC therapy in patients with type 1 diabetes and suggest that a thyroid hormone adjuvant therapy may optimize cell outcomes in some PEC recipients.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nelly Saber
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jennifer E Bruin
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - David M Thompson
- Division of Endocrinology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Peter T W Kim
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Garth L Warnock
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
5
|
Unger L, Ghila L, Chera S. Targeted Gene Silencing by Using GapmeRs in Differentiating Human-Induced Pluripotent Stem Cells (hiPSC) Toward Pancreatic Progenitors. Methods Mol Biol 2024; 2736:23-38. [PMID: 37615889 DOI: 10.1007/7651_2023_498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Induced pluripotent stem cells as a source for generating pancreatic islet endocrine cells represent a great research tool for deciphering the molecular mechanisms of lineage commitment, a layered multi-step process. Additionally, targeted gene silencing by using GapmeRs, short antisense oligonucleotides, proved instrumental in studying the role of different developmental genes. Here we describe our approach to induce mTOR silencing by using specific GapmeRs during the differentiation of induced pluripotent stem cells toward pancreatic progenitors. We will describe our current differentiation protocol, the transfection procedure, and the quality control steps required for a successful experiment.
Collapse
Affiliation(s)
- Lucas Unger
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Luiza Ghila
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Simona Chera
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
6
|
Braam MJS, Zhao J, Liang S, Ida S, Kloostra NK, Iworima DG, Tang M, Baker RK, Quiskamp N, Piret JM, Kieffer TJ. Protocol development to further differentiate and transition stem cell-derived pancreatic progenitors from a monolayer into endocrine cells in suspension culture. Sci Rep 2023; 13:8877. [PMID: 37264038 DOI: 10.1038/s41598-023-35716-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
The generation of functional β-cells from human pluripotent stem cells (hPSCs) for cell replacement therapy and disease modeling of diabetes is being investigated by many groups. We have developed a protocol to harvest and aggregate hPSC-derived pancreatic progenitors generated using a commercially available kit into near uniform spheroids and to further differentiate the cells toward an endocrine cell fate in suspension culture. Using a static suspension culture platform, we could generate a high percentage of insulin-expressing, glucose-responsive cells. We identified FGF7 as a soluble factor promoting aggregate survival with no inhibitory effect on endocrine gene expression. Notch inhibition of pancreatic progenitor cells during aggregation improved endocrine cell induction in vitro and improved graft function following implantation and further differentiation in mice. Thus we provide an approach to promote endocrine formation from kit-derived pancreatic progenitors, either through extended culture or post implant.
Collapse
Affiliation(s)
- Mitchell J S Braam
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Jia Zhao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Shenghui Liang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Shogo Ida
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Nick K Kloostra
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Diepiriye G Iworima
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Mei Tang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - James M Piret
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Inada R, Mendoza HY, Tanaka T, Horie T, Satomi T. Preclinical study for the treatment of diabetes mellitus using β-like cells derived from human dental pulp stem cells. Regen Med 2022; 17:905-913. [DOI: 10.2217/rme-2022-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aim: The current study assessed whether insulin-producing cells obtained from dental pulp stem cells (DPSCs) can be a new therapeutic approach in a rat model of diabetes mellitus (DM). Materials & methods: Stem cells were differentiated into pancreatic β cells under hydrogen sulfide exposure via 2D and 3D methods. Each β-like cell was immunostained and transplanted into DM rats, after which the in vivo therapeutic effect was determined. Results: Immunostaining revealed the expression of various β-cell markers in each β-like cell differentiated using the 3D method. DPSC-derived β-like cell differentiated via the 3D method promoted a sufficient therapeutic effect. Conclusion: The 3D method promoted islet differentiation, indicating that DPSC-derived β-like cell transplantation could be a new approach for DM treatment.
Collapse
Affiliation(s)
- Ryo Inada
- Department of Oral & Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Hiromi Yagi Mendoza
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Tomoko Tanaka
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Tetsuro Horie
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Takafumi Satomi
- Department of Oral & Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| |
Collapse
|
8
|
Ghila L, Legøy TA, Chera S. A Method for Encapsulation and Transplantation into Diabetic Mice of Human Induced Pluripotent Stem Cells (hiPSC)-Derived Pancreatic Progenitors. Methods Mol Biol 2022; 2454:327-349. [PMID: 33786775 DOI: 10.1007/7651_2021_356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pancreatic islet endocrine cells generated from patient-derived induced pluripotent stem cells represent a great strategy for both disease modeling and regenerative medicine. Nevertheless, these cells inherently miss the effects of the intricate network of systemic signals characterizing the living organisms. Xenotransplantation of in vitro differentiating cells into murine hosts substantially compensates for this drawback.Here we describe our transplantation strategy of encapsulated differentiating pancreatic progenitors into diabetic immunosuppressed (NSG) overtly diabetic mice generated by the total ablation of insulin-producing cells following diphtheria toxin administration. We will detail the differentiation protocol employed, the alginate encapsulation procedure, and the xenotransplantation steps required for a successful and reproducible experiment.
Collapse
Affiliation(s)
- Luiza Ghila
- Department of Clinical Science, Faculty of Medicine, Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Thomas Aga Legøy
- Department of Clinical Science, Faculty of Medicine, Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, Faculty of Medicine, Center for Diabetes Research, University of Bergen, Bergen, Norway.
| |
Collapse
|
9
|
Chronically Elevated Exogenous Glucose Elicits Antipodal Effects on the Proteome Signature of Differentiating Human iPSC-Derived Pancreatic Progenitors. Int J Mol Sci 2021; 22:ijms22073698. [PMID: 33918250 PMCID: PMC8038174 DOI: 10.3390/ijms22073698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022] Open
Abstract
The past decade revealed that cell identity changes, such as dedifferentiation or transdifferentiation, accompany the insulin-producing β-cell decay in most diabetes conditions. Mapping and controlling the mechanisms governing these processes is, thus, extremely valuable for managing the disease progression. Extracellular glucose is known to influence cell identity by impacting the redox balance. Here, we use global proteomics and pathway analysis to map the response of differentiating human pancreatic progenitors to chronically increased in vitro glucose levels. We show that exogenous high glucose levels impact different protein subsets in a concentration-dependent manner. In contrast, regardless of concentration, glucose elicits an antipodal effect on the proteome landscape, inducing both beneficial and detrimental changes in regard to achieving the desired islet cell fingerprint. Furthermore, we identified that only a subgroup of these effects and pathways are regulated by changes in redox balance. Our study highlights a complex effect of exogenous glucose on differentiating pancreas progenitors characterized by a distinct proteome signature.
Collapse
|
10
|
Legøy TA, Mathisen AF, Salim Z, Vethe H, Bjørlykke Y, Abadpour S, Paulo JA, Scholz H, Ræder H, Ghila L, Chera S. In vivo Environment Swiftly Restricts Human Pancreatic Progenitors Toward Mono-Hormonal Identity via a HNF1A/HNF4A Mechanism. Front Cell Dev Biol 2020; 8:109. [PMID: 32161757 PMCID: PMC7052484 DOI: 10.3389/fcell.2020.00109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Generating insulin-producing β-cells from human induced pluripotent stem cells is a promising cell replacement therapy for improving or curing insulin-dependent diabetes. The transplantation of end-stages differentiating cells into living hosts was demonstrated to improve β-cell maturation. Nevertheless, the cellular and molecular mechanisms outlining the transplanted cells’ response to the in vivo environment are still to be properly characterized. Here we use global proteomics and large-scale imaging techniques to demultiplex and filter the cellular processes and molecular signatures modulated by the immediate in vivo effect. We show that in vivo exposure swiftly confines in vitro generated human pancreatic progenitors to single hormone expression. The global proteome landscape of the transplanted cells was closer to native human islets, especially in regard to energy metabolism and redox balance. Moreover, our study indicates a possible link between these processes and certain epigenetic regulators involved in cell identity. Pathway analysis predicted HNF1A and HNF4A as key regulators controlling the in vivo islet-promoting response, with experimental evidence suggesting their involvement in confining islet cell fate following xeno-transplantation.
Collapse
Affiliation(s)
- Thomas Aga Legøy
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Zaidon Salim
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Heidrun Vethe
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Yngvild Bjørlykke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shadab Abadpour
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Transplant Medicine, Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Transplant Medicine, Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Helge Ræder
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Luiza Ghila
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|