1
|
Yip KP, Ribeiro-Silva L, Cha B, Rieg T, Sham JSK. Epac induces ryanodine receptor-dependent intracellular and inter-organellar calcium mobilization in mpkCCD cells. Front Physiol 2023; 14:1250273. [PMID: 37711462 PMCID: PMC10497751 DOI: 10.3389/fphys.2023.1250273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Arginine vasopressin (AVP) induces an increase in intracellular Ca2+ concentration ([Ca2+]i) with an oscillatory pattern in isolated perfused kidney inner medullary collecting duct (IMCD). The AVP-induced Ca2+ mobilization in inner medullary collecting ducts is essential for apical exocytosis and is mediated by the exchange protein directly activated by cyclic adenosine monophosphate (Epac). Murine principal kidney cortical collecting duct cells (mpkCCD) is the cell model used for transcriptomic and phosphoproteomic studies of AVP signaling in kidney collecting duct. The present study examined the characteristics of Ca2+ mobilization in mpkCCD cells, and utilized mpkCCD as a model to investigate the Epac-induced intracellular and intra-organellar Ca2+ mobilization. Ca2+ mobilization in cytosol, endoplasmic reticulum lumen, and mitochondrial matrix were monitored with a Ca2+ sensitive fluorescent probe and site-specific Ca2+ sensitive biosensors. Fluorescence images of mpkCCD cells and isolated perfused inner medullary duct were collected with confocal microscopy. Cell permeant ligands of ryanodine receptors (RyRs) and inositol 1,4,5 trisphosphate receptors (IP3Rs) both triggered increase of [Ca2+]i and Ca2+ oscillations in mpkCCD cells as reported previously in IMCD. The cell permeant Epac-specific cAMP analog Me-cAMP/AM also caused a robust Ca2+ mobilization and oscillations in mpkCCD cells. Using biosensors to monitor endoplasmic reticulum (ER) luminal Ca2+ and mitochondrial matrix Ca2+, Me-cAMP/AM not only triggered Ca2+ release from ER into cytoplasm, but also shuttled Ca2+ from ER into mitochondria. The Epac-agonist induced synchronized Ca2+ spikes in cytosol and mitochondrial matrix, with concomitant declines in ER luminal Ca2+. Me-cAMP/AM also effectively triggered store-operated Ca2+ entry (SOCE), suggesting that Epac-agonist is capable of depleting ER Ca2+ stores. These Epac-induced intracellular and inter-organelle Ca2+ signals were mimicked by the RyR agonist 4-CMC, but they were distinctly different from IP3R activation. The present study hence demonstrated that mpkCCD cells retain all reported features of Ca2+ mobilization observed in isolated perfused IMCD. It further revealed information on the dynamics of Epac-induced RyR-dependent Ca2+ signaling and ER-mitochondrial Ca2+ transfer. ER-mitochondrial Ca2+ coupling may play a key role in the regulation of ATP and reactive oxygen species (ROS) production in the mitochondria along the nephron. Our data suggest that mpkCCD cells can serve as a renal cell model to address novel questions of how mitochondrial Ca2+ regulates cytosolic Ca2+ signals, inter-organellar Ca2+ signaling, and renal tubular functions.
Collapse
Affiliation(s)
- Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Hypertension and Kidney Research Center, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Luisa Ribeiro-Silva
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Byeong Cha
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Hypertension and Kidney Research Center, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
| | - James S. K. Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Chuan W, Yuan L, Wen J, Jianwei Z, Caiji W, Zeqi Z, Yalan L, Renlong J, Kang L, Wei L, Houguang L, Wen L, Yuehua Q, Xuanyi L. cAMP-Epac1 signaling is activated in DDAVP-induced endolymphatic hydrops of guinea pigs. Braz J Otorhinolaryngol 2023; 89:469-476. [PMID: 37116375 PMCID: PMC10165185 DOI: 10.1016/j.bjorl.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/07/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
OBJECTIVE To explore whether Cyclic Adenosine Monophosphate (cAMP)-Epac1 signaling is activated in 1-Desamino-8-D-arginine-Vasopressin-induced Endolymphatic Hydrops (DDAVP-induced EH) and to provide new insight for further in-depth study of DDAVP-induced EH. METHODS Eighteen healthy, red-eyed guinea pigs (36 ears) weighing 200-350 g were randomly divided into three groups: the control group, which received intraperitoneal injection of sterile saline (same volume as that in the other two groups) for 7 consecutive days; the DDAVP-7d group, which received intraperitoneal injection of 10 mg/mL/kg DDAVP for 7 consecutive days; and the DDAVP-14d group, which received intraperitoneal injection of 10 μg/mL/kg DDAVP for 14 consecutive days. After successful modeling, all animals were sacrificed, and cochlea tissues were collected to detect the mRNA and protein expression of the exchange protein directly activated by cAMP-1 and 2 (Epac1, Epac2), and Repressor Activator Protein-1 (Rap1) by Reverse Transcription (RT)-PCR and western blotting, respectively. RESULTS Compared to the control group, the relative mRNA expression of Epac1, Epac2, Rap1A, and Rap1B in the cochlea tissue of the DDAVP-7d group was significantly higher (p < 0.05), while no significant difference in Rap1 GTPase activating protein (Rap1gap) mRNA expression was found between the two groups. The relative mRNA expression of Epac1, Rap1A, Rap1B, and Rap1gap in the cochlea tissue of the DDAVP-14d group was significantly higher than that of the control group (p < 0.05), while no significant difference in Epac2 mRNA expression was found between the DDAVP-14d and control groups. Comparison between the DDAVP-14d and DDAVP-7d groups showed that the DDAVP-14d group had significantly lower Epac2 and Rap1A (p < 0.05) and higher Rap1gap (p < 0.05) mRNA expression in the cochlea tissue than that of the DDAVP-7d group, while no significant differences in Epac1 and Rap1B mRNA expression were found between the two groups. Western blotting showed that Epac1 protein expression in the cochlea tissue was the highest in the DDAVP-14d group, followed by that in the DDAVP-7d group, and was the lowest in the control group, showing significant differences between groups (p < 0.05); Rap1 protein expression in the cochlea tissue was the highest in the DDAVP-7d group, followed by the DDAVP-14d group, and was the lowest in the control group, showing significant differences between groups (p < 0.05); no significant differences in Epac2 protein expression in the cochlea tissue were found among the three groups. CONCLUSION DDAVP upregulated Epac1 protein expression in the guinea pig cochlea, leading to activation of the inner ear cAMP-Epac1 signaling pathway. This may be an important mechanism by which DDAVP regulates endolymphatic metabolism to induce EH and affect inner ear function. OXFORD CENTRE FOR EVIDENCE-BASED MEDICINE 2011 LEVELS OF EVIDENCE: Level 5.
Collapse
Affiliation(s)
- Wang Chuan
- The Suqian Clinical College of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Suqian, China; Affiliated Hospital of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Xuzhou, China; Xuzhou Medical University, Institute of Audiology and Balance Science, Xuzhou, China; Xuzhou Medical University, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou, China
| | - Li Yuan
- Affiliated Hospital of Xuzhou Medical University, Department of Radiology, Xuzhou, China
| | - Jiang Wen
- Affiliated Hospital of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Xuzhou, China; Xuzhou Medical University, Institute of Audiology and Balance Science, Xuzhou, China; Xuzhou Medical University, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou, China
| | - Zeng Jianwei
- Affiliated Hospital of Xuzhou Medical University, Department of Radiology, Xuzhou, China
| | - Wang Caiji
- Affiliated Hospital of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Xuzhou, China; Xuzhou Medical University, Institute of Audiology and Balance Science, Xuzhou, China; Xuzhou Medical University, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou, China
| | - Zhao Zeqi
- Affiliated Hospital of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Xuzhou, China; Xuzhou Medical University, Institute of Audiology and Balance Science, Xuzhou, China; Xuzhou Medical University, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou, China
| | - Li Yalan
- Gulou Hospital Affiliated to Medical College of Nanjing University, Department of Otolaryngology Head and Neck Surgery, Nanjing, China
| | - Ji Renlong
- Affiliated Hospital of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Xuzhou, China; Xuzhou Medical University, Institute of Audiology and Balance Science, Xuzhou, China; Xuzhou Medical University, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou, China
| | - Li Kang
- Affiliated Hospital of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Xuzhou, China; Xuzhou Medical University, Institute of Audiology and Balance Science, Xuzhou, China; Xuzhou Medical University, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou, China
| | - Li Wei
- Fudan University, Hearing Research Key Lab of Health Ministry of China, Eye and Ear Nose and Throat Hospital, Department of Otology and Skull Base Surgery, Shanghai, China
| | - Liu Houguang
- China University of Mining and Technology, School of Mechatronic Engineering, Xuzhou, China
| | - Liu Wen
- Xuzhou Medical University, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou, China; Affiliated Hospital of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Xuzhou, China
| | - Qiao Yuehua
- Affiliated Hospital of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Xuzhou, China; Xuzhou Medical University, Institute of Audiology and Balance Science, Xuzhou, China; Xuzhou Medical University, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou, China
| | - Li Xuanyi
- Affiliated Hospital of Xuzhou Medical University, Department of Otorhinolaryngology-Head and Neck Surgery, Xuzhou, China; Xuzhou Medical University, Institute of Audiology and Balance Science, Xuzhou, China; Xuzhou Medical University, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou, China.
| |
Collapse
|
3
|
Pan Y, Liu J, Ren J, Luo Y, Sun X. Epac: A Promising Therapeutic Target for Vascular Diseases: A Review. Front Pharmacol 2022; 13:929152. [PMID: 35910387 PMCID: PMC9330031 DOI: 10.3389/fphar.2022.929152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular diseases affect the circulatory system and comprise most human diseases. They cause severe symptoms and affect the quality of life of patients. Recently, since their identification, exchange proteins directly activated by cAMP (Epac) have attracted increasing scientific interest, because of their role in cyclic adenosine monophosphate (cAMP) signaling, a well-known signal transduction pathway. The role of Epac in cardiovascular disease and cancer is extensively studied, whereas their role in kidney disease has not been comprehensively explored yet. In this study, we aimed to review recent studies on the regulatory effects of Epac on various vascular diseases, such as cardiovascular disease, cerebrovascular disease, and cancer. Accumulating evidence has shown that both Epac1 and Epac2 play important roles in vascular diseases under both physiological and pathological conditions. Additionally, there has been an increasing focus on Epac pharmacological modulators. Therefore, we speculated that Epac could serve as a novel therapeutic target for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yunfeng Pan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Jia Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiahui Ren
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yun Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|