1
|
Lakat T, Fekete A, Demeter K, Toth AR, Varga ZK, Patonai A, Kelemen H, Budai A, Szabo M, Szabo AJ, Kaila K, Denes A, Mikics E, Hosszu A. Perinatal asphyxia leads to acute kidney damage and increased renal susceptibility in adulthood. Am J Physiol Renal Physiol 2024; 327:F314-F326. [PMID: 38932694 DOI: 10.1152/ajprenal.00039.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Perinatal asphyxia (PA) poses a significant threat to multiple organs, particularly the kidneys. Diagnosing PA-associated kidney injury remains challenging, and treatment options are inadequate. Furthermore, there is a lack of long-term follow-up data regarding the renal implications of PA. In this study, 7-day-old male Wistar rats were exposed to PA using a gas mixture (4% O2; 20% CO2 in N2 for 15 min) to investigate molecular pathways linked to renal tubular damage, hypoxia, angiogenesis, heat shock response, inflammation, and fibrosis in the kidney. In a second experiment, adult rats with a history of PA were subjected to moderate renal ischemia-reperfusion (IR) injury to test the hypothesis that PA exacerbates renal susceptibility. Our results revealed an increased gene expression of renal injury markers (kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin), hypoxic and heat shock factors (hypoxia-inducible factor-1α, heat shock factor-1, and heat shock protein-27), proinflammatory cytokines (interleukin-1β, interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1), and fibrotic markers (transforming growth factor-β, connective tissue growth factor, and fibronectin) promptly after PA. Moreover, a machine learning model was identified through random forest analysis, demonstrating an impressive classification accuracy (95.5%) for PA. Post-PA rats showed exacerbated functional decline and tubular injury and more intense hypoxic, heat shock, proinflammatory, and profibrotic response after renal IR injury compared with controls. In conclusion, PA leads to subclinical kidney injury, which may increase the susceptibility to subsequent renal damage later in life. In addition, the parameters identified through random forest analysis provide a robust foundation for future biomarker research in the context of PA.NEW & NOTEWORTHY This article demonstrates that perinatal asphyxia leads to subclinical kidney injury that permanently increases renal susceptibility to subsequent ischemic injury. We identified major molecular pathways involved in perinatal asphyxia-induced renal complications, highlighting potential targets of therapeutic approaches. In addition, random forest analysis revealed a model that classifies perinatal asphyxia with 95.5% accuracy that may provide a strong foundation for further biomarker research. These findings underscore the importance of multiorgan follow-up for perinatal asphyxia-affected patients.
Collapse
Affiliation(s)
- Tamas Lakat
- MTA-SE Lendület "Momentum" Diabetes Research Group, Budapest, Hungary
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Andrea Fekete
- MTA-SE Lendület "Momentum" Diabetes Research Group, Budapest, Hungary
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Kornel Demeter
- Behavioral Studies Unit, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Akos R Toth
- MTA-SE Lendület "Momentum" Diabetes Research Group, Budapest, Hungary
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Zoltan K Varga
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Attila Patonai
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Hanga Kelemen
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Andras Budai
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Miklos Szabo
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Attila J Szabo
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Kai Kaila
- Molecular and Integrative Biosciences Research Programme, Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Adam Denes
- Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Eva Mikics
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Adam Hosszu
- MTA-SE Lendület "Momentum" Diabetes Research Group, Budapest, Hungary
- Pediatric Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Shvetsova AA, Khukhareva DD, Simonenko SD, Khlystova MA, Borzykh AA, Gaynullina DK. Perinatal hypoxia weakens anticontractile influence of NO in rat arteries during early postnatal period. Pediatr Res 2024; 95:1758-1763. [PMID: 38310195 DOI: 10.1038/s41390-024-03062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/21/2023] [Accepted: 01/13/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Perinatal hypoxia affects a lot of neonates worldwide every year, however its effects on the functioning of systemic circulation are not clear yet. We aimed at investigation the effects of perinatal hypoxia on the second day of life on the functioning of the rat systemic vasculature in early postnatal period. METHODS 2-day-old male rat pups were exposed to normobaric hypoxia (8% O2, 92% N2) for 2 hours. At the 11-14 days cutaneous (saphenous) arteries were isolated and studied by wire myography and Western blotting. RESULTS Hypoxia weakened the contribution of anticontractile influence of NO, but did not affect the contribution of Rho-kinase or Kv7 channels to the contraction to α1-adrenergic agonist methoxamine. The content of eNOS and protein kinase G were not altered by hypoxic conditions. CONCLUSION Perinatal hypoxia in rats at the second day of life leads to the decrease of anticontractile effect of NO in the systemic arteries in early postnatal ontogenesis (at the age of 11-14 days). Decreased anticontractile effect of NO can be the reason for insufficient blood supply and represent a risk factor for the development of cardiovascular disorders. IMPACT The mechanisms of perinatal hypoxia influences on systemic circulation are almost unknown. We have shown that perinatal hypoxia weakens anticontractile influence of nitric oxide in early postnatal period. The influence of perinatal hypoxia on systemic circulation should be taken into account during treatment of newborns suffered from the lack of oxygen.
Collapse
Affiliation(s)
| | | | | | | | - Anna A Borzykh
- Lomonosov Moscow State University, Moscow, Russia
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
3
|
Remzső G, Kovács V, Tóth-Szűki V, Domoki F. The effects of CO 2 levels and body temperature on brain interstitial pH alterations during the induction of hypoxic-ischemic encephalopathy in newborn pigs. Heliyon 2024; 10:e28607. [PMID: 38571587 PMCID: PMC10988055 DOI: 10.1016/j.heliyon.2024.e28607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Brain interstitial pH (pHbrain) alterations play a crucial role in the development of hypoxic-ischemic (HI) encephalopathy (HIE) caused by asphyxia in neonates. The newborn pig is one of the most suitable large animal models for studying HIE, however, compared to rats, experimental data on pHbrain alterations during HIE induction are limited. The major objective of the present study was thus to compare pHbrain changes during HIE development induced by experimental normocapnic hypoxia (H) or asphyxia (A), elicited with ventilation of a gas mixture containing 6%O2 or 6%O2/20%CO2, respectively for 20 min, under either normothermia (NT) or hypothermia (HT) (38.5 ± 0.5 °C or 33.5 ± 0.5 °C core temperature, respectively) in anesthetized piglets yielding four groups: H-NT, A-NT, H-HT, and A-HT. pHbrain changes during HI stress and the 60 min reoxygenation period were measured using a pH-selective microelectrode inserted into the parietal cortex through an open cranial window. In all groups, the pHbrain response to HI stress was acidosis, at the nadir pHbrain values dropped from the baseline of 7.27 ± 0.02 to H-NT:5.93 ± 0.30, A-NT:5.90 ± 0.52, H-HT:6.81 ± 0.27, and A-HT:6.27 ± 0.24 indicating that (1) H and A elicited similar, severe brain acidosis under NT greatly exceeding pH changes in arterial blood (pHa dropped to 7.24 ± 0.07 and 6.78 ± 0.03 from 7.52 ± 0.06 and 7.50 ± 0.05, respectively), and (2) HT ameliorated more the brain acidosis induced by H than by A. In all four groups, pHbrain was restored to baseline values without an alkalotic overshoot during the observed reoxygenation, Our findings suggest that under NT either H or A - both commonly employed HI stresses to elicit HIE in piglet models - would result in a similar acidotic pHbrain response without an alkalotic component either during the HI stress or the early reoxygenation period.
Collapse
Affiliation(s)
- Gábor Remzső
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Viktória Kovács
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Valéria Tóth-Szűki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ferenc Domoki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
Boedtkjer E, Ara T. Strengthening the basics: acids and bases influence vascular structure and function, tissue perfusion, blood pressure, and human cardiovascular disease. Pflugers Arch 2024; 476:623-637. [PMID: 38383822 DOI: 10.1007/s00424-024-02926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Acids and their conjugate bases accumulate in or dissipate from the interstitial space when tissue perfusion does not match the metabolic demand. Extracellular acidosis dilates most arterial beds, but associated acid-base disturbances-e.g., intracellular acidification and decreases in HCO3- concentration-can also elicit pro-contractile influences that diminish vasodilation and even dominate in some vascular beds to cause vasoconstriction. The ensemble activities of the acid-base-sensitive reactions in vascular smooth muscle and endothelial cells optimize vascular resistance for blood pressure control and direct the perfusion towards active tissue. In this review, we describe the mechanisms of intracellular pH regulation in the vascular wall and discuss how vascular smooth muscle and endothelial cells sense acid-base disturbances. We further deliberate on the functional effects of local acid-base disturbances and their integrated cardiovascular consequences under physiological and pathophysiological conditions. Finally, we address how mutations and polymorphisms in the molecular machinery that regulates pH locally and senses acid-base disturbances in the vascular wall can result in cardiovascular disease. Based on the emerging molecular insight, we propose that targeting local pH-dependent effectors-rather than systemic acid-base disturbances-has therapeutic potential to interfere with the progression and reduce the severity of cardiovascular disease.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, DK-8000, Aarhus, Denmark.
| | - Tarannum Ara
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, DK-8000, Aarhus, Denmark
| |
Collapse
|
5
|
Lacan L, Garabedian C, De Jonckheere J, Ghesquiere L, Storme L, Sharma D, Nguyen The Tich S. Fetal brain response to worsening acidosis: an experimental study in a fetal sheep model of umbilical cord occlusions. Sci Rep 2023; 13:23050. [PMID: 38155199 PMCID: PMC10754920 DOI: 10.1038/s41598-023-49495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
Perinatal anoxia remains an important public health problem as it can lead to hypoxic-ischaemic encephalopathy (HIE) and cause significant neonatal mortality and morbidity. The mechanisms of the fetal brain's response to hypoxia are still unclear and current methods of in utero HIE prediction are not reliable. In this study, we directly analysed the brain response to hypoxia in fetal sheep using in utero EEG. Near-term fetal sheep were subjected to progressive hypoxia induced by repeated umbilical cord occlusions (UCO) at increasing frequency. EEG changes during and between UCO were analysed visually and quantitatively, and related with gasometric and haemodynamic data. EEG signal was suppressed during occlusions and progressively slowed between occlusions with the increasing severity of the occlusions. Per-occlusion EEG suppression correlated with per-occlusion bradycardia and increased blood pressure, whereas EEG slowing and amplitude decreases correlated with arterial hypotension and respiratory acidosis. The suppression of the EEG signal during cord occlusion, in parallel with cardiovascular adaptation could correspond to a rapid cerebral adaptation mechanism that may have a neuroprotective role. The progressive alteration of the signal with the severity of the occlusions would rather reflect the cerebral hypoperfusion due to the failure of the cardiovascular adaptation mechanisms.
Collapse
Affiliation(s)
- Laure Lacan
- CHU Lille, Univ. Lille, ULR 2694 - METRICS, 59000, Lille, France.
- Department of Pediatric Neurology, CHU Lille, 59000, Lille, France.
- Department of Pediatric Neurology, Hôpital Roger Salengro, CHU Lille, Avenue du Professeur Emile Laine, 59037, Lille Cedex, France.
| | - Charles Garabedian
- CHU Lille, Univ. Lille, ULR 2694 - METRICS, 59000, Lille, France
- Department of Obstetrics, CHU Lille, 59000, Lille, France
| | - Julien De Jonckheere
- CHU Lille, Univ. Lille, ULR 2694 - METRICS, 59000, Lille, France
- CHU Lille, CIC-IT 1403, 59000, Lille, France
| | - Louise Ghesquiere
- CHU Lille, Univ. Lille, ULR 2694 - METRICS, 59000, Lille, France
- Department of Obstetrics, CHU Lille, 59000, Lille, France
| | - Laurent Storme
- CHU Lille, Univ. Lille, ULR 2694 - METRICS, 59000, Lille, France
- Department of Neonatology, CHU Lille, 59000, Lille, France
| | - Dyuti Sharma
- CHU Lille, Univ. Lille, ULR 2694 - METRICS, 59000, Lille, France
- Department of Pediatric Surgery, CHU Lille, 59000, Lille, France
| | - Sylvie Nguyen The Tich
- CHU Lille, Univ. Lille, ULR 2694 - METRICS, 59000, Lille, France
- Department of Pediatric Neurology, CHU Lille, 59000, Lille, France
| |
Collapse
|
6
|
Schmidt R, Welzel B, Löscher W. Effects of season, daytime, sex, and stress on the incidence, latency, frequency, severity, and duration of neonatal seizures in a rat model of birth asphyxia. Epilepsy Behav 2023; 147:109415. [PMID: 37729684 DOI: 10.1016/j.yebeh.2023.109415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/22/2023]
Abstract
Neonatal seizures are common in newborn infants after birth asphyxia. They occur more frequently in male than female neonates, but it is not known whether sex also affects seizure severity or duration. Furthermore, although stress and diurnal, ultradian, circadian, or multidien cycles are known to affect epileptic seizures in adults, their potential impact on neonatal seizures is not understood. This prompted us to examine the effects of season, daytime, sex, and stress on neonatal seizures in a rat model of birth asphyxia. Seizures monitored in 176 rat pups exposed to asphyxia on 40 experimental days performed over 3 years were evaluated. All rat pups exhibited seizures when exposed to asphyxia at postnatal day 11 (P11), which in terms of cortical development corresponds to term human babies. A first examination of these data indicated a seasonal variation, with the highest seizure severity in the spring. Sex and daytime did not affect seizure characteristics. However, when rat pups were subdivided into animals that were exposed to acute (short-term) stress after asphyxia (restraint and i.p. injection of vehicle) and animals that were not exposed to this stress, the seizures in stress-exposed rats were more severe but less frequent. Acute stress induced an increase in hippocampal microglia density in sham-exposed rat pups, which may have an additive effect on microglia activation induced by asphyxia. When seasonal data were separately analyzed for stress-exposed vs. non-stress-exposed rat pups, no significant seasonal variation was observed. This study illustrates that without a detailed analysis of all factors, the data would have erroneously indicated significant seasonal variability in the severity of neonatal seizures. Instead, the study demonstrates that even mild, short-lasting postnatal stress has a profound effect on asphyxia-induced seizures, most likely by increasing the activity of the hypothalamic-pituitary-adrenal axis. It will be interesting to examine how postnatal stress affects the treatment and adverse outcomes of birth asphyxia and neonatal seizures in the rat model used here.
Collapse
Affiliation(s)
- Ricardo Schmidt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Björn Welzel
- Center for Systems Neuroscience Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
7
|
Welzel B, Johne M, Löscher W. Bumetanide potentiates the anti-seizure and disease-modifying effects of midazolam in a noninvasive rat model of term birth asphyxia. Epilepsy Behav 2023; 142:109189. [PMID: 37037061 DOI: 10.1016/j.yebeh.2023.109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Birth asphyxia and the resulting hypoxic-ischemic encephalopathy (HIE) are highly associated with perinatal and neonatal death, neonatal seizures, and an adverse later-life outcome. Currently used drugs, including phenobarbital and midazolam, have limited efficacy to suppress neonatal seizures. There is a medical need to develop new therapies that not only suppress neonatal seizures but also prevent later-life consequences. We have previously shown that the loop diuretic bumetanide does not potentiate the effects of phenobarbital in a rat model of birth asphyxia. Here we compared the effects of bumetanide (0.3 or 10 mg/kg i.p.), midazolam (1 mg/kg i.p.), and a combination of bumetanide and midazolam on neonatal seizures and later-life outcomes in this model. While bumetanide at either dose was ineffective when administered alone, the higher dose of bumetanide markedly potentiated midazolam's effect on neonatal seizures. Median bumetanide brain levels (0.47-0.53 µM) obtained with the higher dose were in the range known to inhibit the Na-K-Cl-cotransporter NKCC1 but it remains to be determined whether brain NKCC1 inhibition was underlying the potentiation of midazolam. When behavioral and cognitive alterations were examined over three months after asphyxia, treatment with the bumetanide/midazolam combination, but not with bumetanide or midazolam alone, prevented impairment of learning and memory. Furthermore, the combination prevented the loss of neurons in the dentate hilus and aberrant mossy fiber sprouting in the CA3a area of the hippocampus. The molecular mechanisms that explain that bumetanide potentiates midazolam but not phenobarbital in the rat model of birth asphyxia remain to be determined.
Collapse
Affiliation(s)
- Björn Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany.
| |
Collapse
|
8
|
Welzel B, Schmidt R, Kirchhoff L, Gramer M, Löscher W. The loop diuretic torasemide but not azosemide potentiates the anti-seizure and disease-modifying effects of midazolam in a rat model of birth asphyxia. Epilepsy Behav 2023; 139:109057. [PMID: 36586153 DOI: 10.1016/j.yebeh.2022.109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
Loop diuretics such as furosemide and bumetanide, which act by inhibiting the Na-K-2Cl cotransporter NKCC2 at the thick ascending limb of the loop of Henle, have been shown to exert anti-seizure effects. However, the exact mechanism of this effect is not known. For bumetanide, it has been suggested that inhibition of the NKCC isoform NKCC1 in the membrane of brain neurons may be involved; however, NKCC1 is expressed by virtually all cell types in the brain, which makes any specific targeting of neuronal NKCC1 by bumetanide impossible. In addition, bumetanide only poorly penetrates the brain. We have previously shown that loop diuretics azosemide and torasemide also potently inhibit NKCC1. In contrast to bumetanide and furosemide, azosemide and torasemide lack a carboxylic group, which should allow them to better penetrate through biomembranes by passive diffusion. Because of the urgent medical need to develop new treatments for neonatal seizures and their adverse outcome, we evaluated the effects of azosemide and torasemide, administered alone or in combination with phenobarbital or midazolam, in a rat model of birth asphyxia and neonatal seizures. Neither diuretic suppressed the seizures when administered alone but torasemide potentiated the anti-seizure effect of midazolam. Brain levels of torasemide were below those needed to inhibit NKCC1. In addition to suppressing seizures, the combination of torasemide and midazolam, but not midazolam alone, prevented the cognitive impairment of the post-asphyxial rats at 3 months after asphyxia. Furthermore, aberrant mossy fiber sprouting in the hippocampus was more effectively prevented by the combination. We assume that either an effect on NKCC1 at the blood-brain barrier and/or cells in the periphery or the NKCC2-mediated diuretic effect of torasemide are involved in the present findings. Our data suggest that torasemide may be a useful option for improving the treatment of neonatal seizures and their adverse outcome.
Collapse
Affiliation(s)
- Björn Welzel
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Ricardo Schmidt
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Larsen Kirchhoff
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Martina Gramer
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Wolfgang Löscher
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany.
| |
Collapse
|
9
|
Welzel B, Schmidt R, Johne M, Löscher W. Midazolam Prevents the Adverse Outcome of Neonatal Asphyxia. Ann Neurol 2023; 93:226-243. [PMID: 36054632 DOI: 10.1002/ana.26498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Birth asphyxia (BA) is the most frequent cause of neonatal death as well as central nervous system (CNS) injury. BA is often associated with neonatal seizures, which only poorly respond to anti-seizure medications and may contribute to the adverse neurodevelopmental outcome. Using a non-invasive rat model of BA, we have recently reported that the potent benzodiazepine, midazolam, prevents neonatal seizures in ~50% of rat pups. In addition to its anti-seizure effect, midazolam exerts anti-inflammatory actions, which is highly relevant for therapeutic intervention following BA. The 2 major aims of the present study were to examine (1) whether midazolam reduces the adverse outcome of BA, and (2) whether this effect is different in rats that did or did not exhibit neonatal seizures after drug treatment. METHODS Behavioral and cognitive tests were performed over 14 months after asphyxia, followed by immunohistochemical analyses. RESULTS All vehicle-treated rats had seizures after asphyxia and developed behavioral and cognitive abnormalities, neuroinflammation in gray and white matter, neurodegeneration in the hippocampus and thalamus, and hippocampal mossy fiber sprouting in subsequent months. Administration of midazolam (1 mg/kg i.p.) directly after asphyxia prevented post-asphyctic seizures in ~50% of the rats and resulted in the prevention or decrease of neuroinflammation and the behavioral, cognitive, and neurodegenerative consequences of asphyxia. Except for neurodegeneration in the thalamus, seizures did not seem to contribute to the adverse outcome of asphyxia. INTERPRETATION The disease-modifying effect of midazolam identified here strongly suggests that this drug provides a valuable option for improving the treatment and outcome of BA. ANN NEUROL 2023;93:226-243.
Collapse
Affiliation(s)
- Björn Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Ricardo Schmidt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
10
|
Luhmann HJ, Kanold PO, Molnár Z, Vanhatalo S. Early brain activity: Translations between bedside and laboratory. Prog Neurobiol 2022; 213:102268. [PMID: 35364141 PMCID: PMC9923767 DOI: 10.1016/j.pneurobio.2022.102268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 01/29/2023]
Abstract
Neural activity is both a driver of brain development and a readout of developmental processes. Changes in neuronal activity are therefore both the cause and consequence of neurodevelopmental compromises. Here, we review the assessment of neuronal activities in both preclinical models and clinical situations. We focus on issues that require urgent translational research, the challenges and bottlenecks preventing translation of biomedical research into new clinical diagnostics or treatments, and possibilities to overcome these barriers. The key questions are (i) what can be measured in clinical settings versus animal experiments, (ii) how do measurements relate to particular stages of development, and (iii) how can we balance practical and ethical realities with methodological compromises in measurements and treatments.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.,Correspondence:, , ,
| | - Patrick O. Kanold
- Department of Biomedical Engineering and Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, 720 Rutland Avenue / Miller 379, Baltimore, MD 21205, USA.,Correspondence:, , ,
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | - Sampsa Vanhatalo
- BABA Center, Departments of Physiology and Clinical Neurophysiology, Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
11
|
Kaila K, Löscher W. Bumetanide for neonatal seizures: no light in the pharmacokinetic/dynamic tunnel. Epilepsia 2022; 63:1868-1873. [PMID: 35524446 PMCID: PMC9545618 DOI: 10.1111/epi.17279] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
In his editorial, Kevin Staley criticizes our recent work demonstrating the lack of effect of bumetanide in a novel model of neonatal seizures. The main points in our response are that (1) our work is on an asphyxia model, not one on "hypercarbia only"; (2) clinically relevant parenteral doses of bumetanide applied in vivo lead to concentrations in the brain parenchyma that are at least an order of magnitude lower than what would be sufficient to exert any direct effect—even a transient one—on neuronal functions, including neonatal seizures; and (3) moreover, bumetanide's molecular target in the brain is the Na‐K‐2Cl cotransporter NKCC1, which has vital functions in neurons, astrocytes, and oligodendrocytes as well as microglia. This would make it impossible even for highly brain‐permeant NKCC1 blockers to specifically target depolarizing and excitatory actions of γ‐aminobutyric acid in principal neurons of the brain, which is postulated as the rationale of clinical trials on neonatal seizures.
Collapse
Affiliation(s)
- Kai Kaila
- Molecular and Integrative Biosciences (MIBS) and Neuroscience Center (HiLIFE), University of Helsinki, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
12
|
Persson PB. Acta Physiologica, member of the top 5% club. Acta Physiol (Oxf) 2022; 235:e13807. [PMID: 35224876 DOI: 10.1111/apha.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Pontus B. Persson
- Institute of Vegetative Physiology Charité – Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
13
|
Persson PB, Persson AB. Physiological research in an attention economy. Acta Physiol (Oxf) 2022; 234:e13797. [PMID: 35146919 DOI: 10.1111/apha.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Pontus B. Persson
- Institute of Vegetative Physiology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Anja B. Persson
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| |
Collapse
|
14
|
Bothe TL, Dippel LJ, Pilz N. The Art of Planning-How many samples are enough? Acta Physiol (Oxf) 2022; 234:e13746. [PMID: 34907659 DOI: 10.1111/apha.13746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Tomas L. Bothe
- Institute of Vegetative Physiology Charité –Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Laura Josefa Dippel
- Institute of Vegetative Physiology Charité –Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Niklas Pilz
- Institute of Vegetative Physiology Charité –Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| |
Collapse
|
15
|
Löscher W, Kaila K. CNS pharmacology of NKCC1 inhibitors. Neuropharmacology 2021; 205:108910. [PMID: 34883135 DOI: 10.1016/j.neuropharm.2021.108910] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022]
Abstract
The Na-K-2Cl cotransporter NKCC1 and the neuron-specific K-Cl cotransporter KCC2 are considered attractive CNS drug targets because altered neuronal chloride regulation and consequent effects on GABAergic signaling have been implicated in numerous CNS disorders. While KCC2 modulators are not yet clinically available, the loop diuretic bumetanide has been used off-label in attempts to treat brain disorders and as a tool for NKCC1 inhibition in preclinical models. Bumetanide is known to have anticonvulsant and neuroprotective effects under some pathophysiological conditions. However, as shown in several species from neonates to adults (mice, rats, dogs, and by extrapolation in humans), at the low clinical doses of bumetanide approved for diuresis, this drug has negligible access into the CNS, reaching levels that are much lower than what is needed to inhibit NKCC1 in cells within the brain parenchyma. Several drug discovery strategies have been initiated over the last ∼15 years to develop brain-permeant compounds that, ideally, should be selective for NKCC1 to eliminate the diuresis mediated by inhibition of renal NKCC2. The strategies employed to improve the pharmacokinetic and pharmacodynamic properties of NKCC1 blockers include evaluation of other clinically approved loop diuretics; development of lipophilic prodrugs of bumetanide; development of side-chain derivatives of bumetanide; and unbiased high-throughput screening approaches of drug discovery based on large chemical compound libraries. The main outcomes are that (1), non-acidic loop diuretics such as azosemide and torasemide may have advantages as NKCC1 inhibitors vs. bumetanide; (2), bumetanide prodrugs lead to significantly higher brain levels than the parent drug and have lower diuretic activity; (3), the novel bumetanide side-chain derivatives do not exhibit any functionally relevant improvement of CNS accessibility or NKCC1 selectivity vs. bumetanide; (4) novel compounds discovered by high-throughput screening may resolve some of the inherent problems of bumetanide, but as yet this has not been achieved. Thus, further research is needed to optimize the design of brain-permeant NKCC1 inhibitors. In parallel, a major challenge is to identify the mechanisms whereby various NKCC1-expressing cellular targets of these drugs within (e.g., neurons, oligodendrocytes or astrocytes) and outside the brain parenchyma (e.g., the blood-brain barrier, the choroid plexus, and the endocrine system), as well as molecular off-target effects, might contribute to their reported therapeutic and adverse effects.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany.
| | - Kai Kaila
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Finland
| |
Collapse
|
16
|
Persson PB. A further increase in Acta Physiologica's impact factor. Acta Physiol (Oxf) 2021; 233:e13710. [PMID: 34214255 DOI: 10.1111/apha.13710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Pontus B. Persson
- Charité – Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Vegetative Physiology Berlin Germany
| |
Collapse
|
17
|
Affiliation(s)
- Vera A. Kulow
- Charité – Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinMedizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin Berlin Germany
| | - Michael Fähling
- Charité – Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitut für Vegetative Physiologie Berlin Germany
| |
Collapse
|
18
|
Gailus B, Naundorf H, Welzel L, Johne M, Römermann K, Kaila K, Löscher W. Long-term outcome in a noninvasive rat model of birth asphyxia with neonatal seizures: Cognitive impairment, anxiety, epilepsy, and structural brain alterations. Epilepsia 2021; 62:2826-2844. [PMID: 34458992 DOI: 10.1111/epi.17050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Birth asphyxia is a major cause of hypoxic-ischemic encephalopathy (HIE) in neonates and often associated with mortality, neonatal seizures, brain damage, and later life motor, cognitive, and behavioral impairments and epilepsy. Preclinical studies on rodent models are needed to develop more effective therapies for preventing HIE and its consequences. Thus far, the most popular rodent models have used either exposure of intact animals to hypoxia-only, or a combination of hypoxia and carotid occlusion, for the induction of neonatal seizures and adverse outcomes. However, such models lack systemic hypercapnia, which is a fundamental constituent of birth asphyxia with major effects on neuronal excitability. Here, we use a recently developed noninvasive rat model of birth asphyxia with subsequent neonatal seizures to study later life adverse outcome. METHODS Intermittent asphyxia was induced for 30 min by exposing male and female postnatal day 11 rat pups to three 7 + 3-min cycles of 9% and 5% O2 at constant 20% CO2 . All pups exhibited convulsive seizures after asphyxia. A set of behavioral tests were performed systematically over 14 months following asphyxia, that is, a large part of the rat's life span. Video-electroencephalographic (EEG) monitoring was used to determine whether asphyxia led to the development of epilepsy. Finally, structural brain alterations were examined. RESULTS The animals showed impaired spatial learning and memory and increased anxiety when tested at an age of 3-14 months. Video-EEG at ~10 months showed an abundance of spontaneous seizures, which was paralleled by neurodegeneration in the hippocampus and thalamus, and by aberrant mossy fiber sprouting. SIGNIFICANCE The present model of birth asphyxia recapitulates several of the later life consequences associated with human HIE. This model thus allows evaluation of the efficacy of novel therapies designed to prevent HIE and seizures following asphyxia, and of how such therapies might alleviate long-term adverse consequences.
Collapse
Affiliation(s)
- Björn Gailus
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Hannah Naundorf
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Lisa Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
19
|
Pospelov AS, Ala-Kurikka T, Kurki S, Voipio J, Kaila K. Carbonic anhydrase inhibitors suppress seizures in a rat model of birth asphyxia. Epilepsia 2021; 62:1971-1984. [PMID: 34180051 DOI: 10.1111/epi.16963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Seizures are common in neonates recovering from birth asphyxia but there is general consensus that current pharmacotherapy is suboptimal and that novel antiseizure drugs are needed. We recently showed in a rat model of birth asphyxia that seizures are triggered by the post-asphyxia recovery of brain pH. Here our aim was to investigate whether carbonic anhydrase inhibitors (CAIs), which induce systemic acidosis, block the post-asphyxia seizures. METHODS The CAIs acetazolamide (AZA), benzolamide (BZA), and ethoxzolamide (EZA) were administered intraperitoneally or intravenously to 11-day-old rats exposed to intermittent asphyxia (30 min; three 7+3 min cycles of 9% and 5% O2 at 20% CO2 ). Electrode measurements of intracortical pH, Po2 , and local field potentials (LFPs) were made under urethane anesthesia. Convulsive seizures and blood acid-base parameters were examined in freely behaving animals. RESULTS The three CAIs decreased brain pH by 0.14-0.17 pH units and suppressed electrographic post-asphyxia seizures. AZA, BZA, and EZA differ greatly in their lipid solubility (EZA > AZA > BZA) and pharmacokinetics. However, there were only minor differences in the delay (range 0.8-3.7 min) from intraperitoneal application to their action on brain pH. The CAIs induced a modest post-asphyxia elevation of brain Po2 that had no effect on LFP activity. AZA was tested in freely behaving rats, in which it induced a respiratory acidosis and decreased the incidence of convulsive seizures from 9 of 20 to 2 of 17 animals. SIGNIFICANCE AZA, BZA, and EZA effectively block post-asphyxia seizures. Despite the differences in their pharmacokinetics, they had similar effects on brain pH, which indicates that their antiseizure mode of action was based on respiratory (hypercapnic) acidosis resulting from inhibition of blood-borne and extracellular vascular carbonic anhydrases. AZA has been used for several indications in neonates, suggesting that it can be safely repurposed for the treatment of neonatal seizures as an add-on to the current treatment regimen.
Collapse
Affiliation(s)
- Alexey S Pospelov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Tommi Ala-Kurikka
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Samu Kurki
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Juha Voipio
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
| | - Kai Kaila
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Johne M, Käufer C, Römermann K, Gailus B, Gericke B, Löscher W. A combination of phenobarbital and the bumetanide derivative bumepamine prevents neonatal seizures and subsequent hippocampal neurodegeneration in a rat model of birth asphyxia. Epilepsia 2021; 62:1460-1471. [PMID: 33955541 DOI: 10.1111/epi.16912] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Bumetanide was suggested as an adjunct to phenobarbital for suppression of neonatal seizures. This suggestion was based on the idea that bumetanide, by reducing intraneuronal chloride accumulation through inhibition of the Na-K-2Cl cotransporter NKCC1, may attenuate or abolish depolarizing γ-aminobutyric acid (GABA) responses caused by birth asphyxia. However, a first proof-of-concept clinical trial failed. This could have had several reasons, including bumetanide's poor brain penetration, the wide cellular NKCC1 expression pattern in the brain, and problems with the general concept of NKCC1's role in neonatal seizures. We recently replicated the clinical failure of bumetanide to potentiate phenobarbital's effect in a novel rat model of birth asphyxia. In this study, a clinically relevant dose (0.3 mg/kg) of bumetanide was used that does not lead to NKCC1-inhibitory brain levels. The aim of the present experiments was to examine whether a much higher dose (10 mg/kg) of bumetanide is capable of potentiating phenobarbital in this rat model. Furthermore, the effects of the two lipophilic bumetanide derivatives, the ester prodrug N,N-dimethylaminoethylester of bumetanide (DIMAEB) and the benzylamine derivative bumepamine, were examined at equimolar doses. METHODS Intermittent asphyxia was induced for 30 min by exposing male and female P11 rat pups to three 7 + 3 min cycles of 9% and 5% O2 at constant 20% CO2 . All control pups exhibited neonatal seizures after the asphyxia. RESULTS Even at 10 mg/kg, bumetanide did not potentiate the effect of a submaximal dose (15 mg/kg) of phenobarbital on seizure incidence, whereas a significant suppression of neonatal seizures was determined for combinations of phenobarbital with DIMAEB or, more effectively, bumepamine, which, however, does not inhibit NKCC1. Of interest, the bumepamine/phenobarbital combination prevented the neurodegenerative consequences of asphyxia and seizures in the hippocampus. SIGNIFICANCE Both bumepamine and DIMAEB are promising tools that may help to develop more effective lead compounds for clinical trials.
Collapse
Affiliation(s)
- Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Björn Gailus
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Birthe Gericke
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
21
|
Kovács V, Remzső G, Körmöczi T, Berkecz R, Tóth-Szűki V, Pénzes A, Vécsei L, Domoki F. The Kynurenic Acid Analog SZR72 Enhances Neuronal Activity after Asphyxia but Is Not Neuroprotective in a Translational Model of Neonatal Hypoxic Ischemic Encephalopathy. Int J Mol Sci 2021; 22:4822. [PMID: 34062911 PMCID: PMC8125407 DOI: 10.3390/ijms22094822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) remains to be a major cause of long-term neurodevelopmental deficits in term neonates. Hypothermia offers partial neuroprotection warranting research for additional therapies. Kynurenic acid (KYNA), an endogenous product of tryptophan metabolism, was previously shown to be beneficial in rat HIE models. We sought to determine if the KYNA analog SZR72 would afford neuroprotection in piglets. After severe asphyxia (pHa = 6.83 ± 0.02, ΔBE = -17.6 ± 1.2 mmol/L, mean ± SEM), anesthetized piglets were assigned to vehicle-treated (VEH), SZR72-treated (SZR72), or hypothermia-treated (HT) groups (n = 6, 6, 6; Tcore = 38.5, 38.5, 33.5 °C, respectively). Compared to VEH, serum KYNA levels were elevated, recovery of EEG was faster, and EEG power spectral density values were higher at 24 h in the SZR72 group. However, instantaneous entropy indicating EEG signal complexity, depression of the visual evoked potential (VEP), and the significant neuronal damage observed in the neocortex, the putamen, and the CA1 hippocampal field were similar in these groups. In the caudate nucleus and the CA3 hippocampal field, neuronal damage was even more severe in the SZR72 group. The HT group showed the best preservation of EEG complexity, VEP, and neuronal integrity in all examined brain regions. In summary, SZR72 appears to enhance neuronal activity after asphyxia but does not ameliorate early neuronal damage in this HIE model.
Collapse
Affiliation(s)
- Viktória Kovács
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (V.K.); (G.R.); (V.T.-S.); (A.P.)
| | - Gábor Remzső
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (V.K.); (G.R.); (V.T.-S.); (A.P.)
| | - Tímea Körmöczi
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Center, University of Szeged, 6720 Szeged, Hungary; (T.K.); (R.B.)
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Center, University of Szeged, 6720 Szeged, Hungary; (T.K.); (R.B.)
| | - Valéria Tóth-Szűki
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (V.K.); (G.R.); (V.T.-S.); (A.P.)
| | - Andrea Pénzes
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (V.K.); (G.R.); (V.T.-S.); (A.P.)
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, University of Szeged, 6720 Szeged, Hungary;
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged, 6720 Szeged, Hungary
| | - Ferenc Domoki
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (V.K.); (G.R.); (V.T.-S.); (A.P.)
| |
Collapse
|
22
|
Domoki F. Hydrogen-induced Neuroprotection in Neonatal Hypoxic-ischemic Encephalopathy. Curr Pharm Des 2021; 27:687-694. [PMID: 33185158 DOI: 10.2174/1381612826666201113095720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) remains to be a major cause of morbidity, mortality and severe neurodevelopmental disability in term neonates. Moderate whole body hypothermia is an established, effective neuroprotective therapy to reduce mortality and long-term disability associated with HIE, however, research for adjunct therapies is still warranted to complement the effect of hypothermia. In the last decade, molecular hydrogen emerged as a simple, available, inexpensive substance with advantageous pharmacokinetics to ameliorate hypoxic-ischemic cellular damage. The present review examines the preclinical studies employing hydrogen to combat the deleterious consequences of hypoxic-ischemic insults in rodent and piglet HIE models. Hydrogen exerted unequivocal neuroprotective actions shown by preserved neurovascular function, neuronal viability, and neurocognitive functions in virtually all model species and hypoxic-ischemic insult types tested. Administration of hydrogen started in most studies after the hypoxic-ischemic insult enhancing the translational value of the findings. Among the explored mechanisms of hydrogen-induced neuroprotection, antioxidant, anti- apoptotic and anti-inflammatory effects appeared to be dominant. Unfortunately, the additive neuroprotective effect of hydrogen and therapeutic hypothermia has not yet been demonstrated, thus such studies are warranted to promote the clinical testing of molecular hydrogen as an adjunct neuroprotective treatment of HIE.
Collapse
Affiliation(s)
- Ferenc Domoki
- Department of Physiology, University of Szeged, School of Medicine, Szeged, Hungary
| |
Collapse
|
23
|
Persson PB, Persson AB. Environment and exposure. Acta Physiol (Oxf) 2021; 231:e13632. [PMID: 33606351 DOI: 10.1111/apha.13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Pontus B. Persson
- Charité – Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthInstitute of Vegetative Physiology Berlin Germany
| | - Anja B. Persson
- Charité – Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| |
Collapse
|
24
|
Ala‐Kurikka T, Pospelov A, Summanen M, Alafuzoff A, Kurki S, Voipio J, Kaila K. A physiologically validated rat model of term birth asphyxia with seizure generation after, not during, brain hypoxia. Epilepsia 2021; 62:908-919. [PMID: 33338272 PMCID: PMC8246723 DOI: 10.1111/epi.16790] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Birth asphyxia (BA) is often associated with seizures that may exacerbate the ensuing hypoxic-ischemic encephalopathy. In rodent models of BA, exposure to hypoxia is used to evoke seizures, that commence already during the insult. This is in stark contrast to clinical BA, in which seizures are typically seen upon recovery. Here, we introduce a term-equivalent rat model of BA, in which seizures are triggered after exposure to asphyxia. METHODS Postnatal day 11-12 male rat pups were exposed to steady asphyxia (15 min; air containing 5% O2 + 20% CO2 ) or to intermittent asphyxia (30 min; three 5 + 5-min cycles of 9% and 5% O2 at 20% CO2 ). Cortical activity and electrographic seizures were recorded in freely behaving animals. Simultaneous electrode measurements of intracortical pH, Po2 , and local field potentials (LFPs) were made under urethane anesthesia. RESULTS Both protocols decreased blood pH to <7.0 and brain pH from 7.3 to 6.7 and led to a fall in base excess by 20 mmol·L-1 . Electrographic seizures with convulsions spanning the entire Racine scale were triggered after intermittent but not steady asphyxia. In the presence of 20% CO2 , brain Po2 was only transiently affected by 9% ambient O2 but fell below detection level during the steps to 5% O2 , and LFP activity was nearly abolished. Post-asphyxia seizures were strongly suppressed when brain pH recovery was slowed down by 5% CO2 . SIGNIFICANCE The rate of brain pH recovery has a strong influence on post-asphyxia seizure propensity. The recurring hypoxic episodes during intermittent asphyxia promote neuronal excitability, which leads to seizures only after the suppressing effect of the hypercapnic acidosis is relieved. The present rodent model of BA is to our best knowledge the first one in which, consistent with clinical BA, behavioral and electrographic seizures are triggered after and not during the BA-mimicking insult.
Collapse
Affiliation(s)
- Tommi Ala‐Kurikka
- Faculty of Biological and Environmental Sciences, Molecular and Integrative BiosciencesUniversity of HelsinkiHelsinkiFinland
- Neuroscience Center (HiLIFE)University of HelsinkiHelsinkiFinland
| | - Alexey Pospelov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative BiosciencesUniversity of HelsinkiHelsinkiFinland
- Neuroscience Center (HiLIFE)University of HelsinkiHelsinkiFinland
| | - Milla Summanen
- Faculty of Biological and Environmental Sciences, Molecular and Integrative BiosciencesUniversity of HelsinkiHelsinkiFinland
- Neuroscience Center (HiLIFE)University of HelsinkiHelsinkiFinland
| | - Aleksander Alafuzoff
- Faculty of Biological and Environmental Sciences, Molecular and Integrative BiosciencesUniversity of HelsinkiHelsinkiFinland
- Neuroscience Center (HiLIFE)University of HelsinkiHelsinkiFinland
| | - Samu Kurki
- Faculty of Biological and Environmental Sciences, Molecular and Integrative BiosciencesUniversity of HelsinkiHelsinkiFinland
- Neuroscience Center (HiLIFE)University of HelsinkiHelsinkiFinland
| | - Juha Voipio
- Faculty of Biological and Environmental Sciences, Molecular and Integrative BiosciencesUniversity of HelsinkiHelsinkiFinland
| | - Kai Kaila
- Faculty of Biological and Environmental Sciences, Molecular and Integrative BiosciencesUniversity of HelsinkiHelsinkiFinland
- Neuroscience Center (HiLIFE)University of HelsinkiHelsinkiFinland
| |
Collapse
|
25
|
Löscher W, Kaila K. Reply to the commentary by Ben-Ari and Delpire: Bumetanide and neonatal seizures: Fiction versus reality. Epilepsia 2021; 62:941-946. [PMID: 33764535 DOI: 10.1111/epi.16866] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
In this response to a commentary by Ben-Ari and Delpire on our recent study on the pharmacology of neonatal seizures in a novel, physiologically validated rat model of birth asphyxia, we wish to rectify their inaccurate descriptions of our model and data. Furthermore, because Ben-Ari and Delpire suggest that negative data on bumetanide from preclinical and clinical trials of neonatal seizures have few implications for (alleged) bumetanide actions on neurons in other brain disorders, we will discuss this topic as well. Based on the poor brain penetration of bumetanide, combined with the extremely wide cellular expression patterns of the target protein NKCC1, it is obvious that the numerous actions of systemically applied bumetanide described in the literature are not mediated by the drug's effects on central neurons.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Persson PB, Persson AB. Pregnancy. Acta Physiol (Oxf) 2021; 231:e13582. [PMID: 33220173 DOI: 10.1111/apha.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Pontus B. Persson
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| | - Anja B. Persson
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| |
Collapse
|
27
|
Johne M, Römermann K, Hampel P, Gailus B, Theilmann W, Ala-Kurikka T, Kaila K, Löscher W. Phenobarbital and midazolam suppress neonatal seizures in a noninvasive rat model of birth asphyxia, whereas bumetanide is ineffective. Epilepsia 2020; 62:920-934. [PMID: 33258158 DOI: 10.1111/epi.16778] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Neonatal seizures are the most frequent type of neurological emergency in newborn infants, often being a consequence of prolonged perinatal asphyxia. Phenobarbital is currently the most widely used antiseizure drug for treatment of neonatal seizures, but fails to stop them in ~50% of cases. In a neonatal hypoxia-only model based on 11-day-old (P11) rats, the NKCC1 inhibitor bumetanide was reported to potentiate the antiseizure activity of phenobarbital, whereas it was ineffective in a human trial in neonates. The aim of this study was to evaluate the effect of clinically relevant doses of bumetanide as add-on to phenobarbital on neonatal seizures in a noninvasive model of birth asphyxia in P11 rats, designed for better translation to the human term neonate. METHODS Intermittent asphyxia was induced for 30 minutes by exposing the rat pups to three 7 + 3-minute cycles of 9% and 5% O2 at constant 20% CO2 . Drug treatments were administered intraperitoneally either before or immediately after asphyxia. RESULTS All untreated rat pups had seizures within 10 minutes after termination of asphyxia. Phenobarbital significantly blocked seizures when applied before asphyxia at 30 mg/kg but not 15 mg/kg. Administration of phenobarbital after asphyxia was ineffective, whereas midazolam (0.3 or 1 mg/kg) exerted significant antiseizure effects when administered before or after asphyxia. In general, focal seizures were more resistant to treatment than generalized convulsive seizures. Bumetanide (0.3 mg/kg) alone or in combination with phenobarbital (15 or 30 mg/kg) exerted no significant effect on seizure occurrence. SIGNIFICANCE The data demonstrate that bumetanide does not increase the efficacy of phenobarbital in a model of birth asphyxia, which is consistent with the negative data of the recent human trial. The translational data obtained with the novel rat model of birth asphyxia indicate that it is a useful tool to evaluate novel treatments for neonatal seizures.
Collapse
Affiliation(s)
- Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Philip Hampel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Björn Gailus
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Wiebke Theilmann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Tommi Ala-Kurikka
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Kai Kaila
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
28
|
Kovács V, Remzső G, Tóth-Szűki V, Varga V, Németh J, Domoki F. Inhaled H 2 or CO 2 Do Not Augment the Neuroprotective Effect of Therapeutic Hypothermia in a Severe Neonatal Hypoxic-Ischemic Encephalopathy Piglet Model. Int J Mol Sci 2020; 21:E6801. [PMID: 32948011 PMCID: PMC7555370 DOI: 10.3390/ijms21186801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is still a major cause of neonatal death and disability as therapeutic hypothermia (TH) alone cannot afford sufficient neuroprotection. The present study investigated whether ventilation with molecular hydrogen (2.1% H2) or graded restoration of normocapnia with CO2 for 4 h after asphyxia would augment the neuroprotective effect of TH in a subacute (48 h) HIE piglet model. Piglets were randomized to untreated naïve, control-normothermia, asphyxia-normothermia (20-min 4%O2-20%CO2 ventilation; Tcore = 38.5 °C), asphyxia-hypothermia (A-HT, Tcore = 33.5 °C, 2-36 h post-asphyxia), A-HT + H2, or A-HT + CO2 treatment groups. Asphyxia elicited severe hypoxia (pO2 = 19 ± 5 mmHg) and mixed acidosis (pH = 6.79 ± 0.10). HIE development was confirmed by altered cerebral electrical activity and neuropathology. TH was significantly neuroprotective in the caudate nucleus but demonstrated virtually no such effect in the hippocampus. The mRNA levels of apoptosis-inducing factor and caspase-3 showed a ~10-fold increase in the A-HT group compared to naïve animals in the hippocampus but not in the caudate nucleus coinciding with the region-specific neuroprotective effect of TH. H2 or CO2 did not augment TH-induced neuroprotection in any brain areas; rather, CO2 even abolished the neuroprotective effect of TH in the caudate nucleus. In conclusion, the present findings do not support the use of these medical gases to supplement TH in HIE management.
Collapse
MESH Headings
- Acidosis/blood
- Acidosis/etiology
- Acidosis/prevention & control
- Administration, Inhalation
- Animals
- Animals, Newborn
- Apoptosis Inducing Factor/biosynthesis
- Apoptosis Inducing Factor/genetics
- Asphyxia Neonatorum/complications
- Asphyxia Neonatorum/drug therapy
- Asphyxia Neonatorum/therapy
- Brain Damage, Chronic/etiology
- Brain Damage, Chronic/prevention & control
- Brain-Derived Neurotrophic Factor/biosynthesis
- Brain-Derived Neurotrophic Factor/genetics
- Carbon Dioxide/administration & dosage
- Carbon Dioxide/therapeutic use
- Carbon Dioxide/toxicity
- Caspase 3/biosynthesis
- Caspase 3/genetics
- Caudate Nucleus/pathology
- Cerebral Cortex/metabolism
- Cerebral Cortex/pathology
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Electroencephalography
- Evoked Potentials, Visual/drug effects
- Gene Expression Regulation/drug effects
- Hippocampus/pathology
- Hydrogen/administration & dosage
- Hydrogen/analysis
- Hydrogen/therapeutic use
- Hypothermia, Induced
- Hypoxia-Ischemia, Brain/complications
- Hypoxia-Ischemia, Brain/drug therapy
- Hypoxia-Ischemia, Brain/pathology
- Hypoxia-Ischemia, Brain/therapy
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Neuroprotection/drug effects
- Neuroprotective Agents/administration & dosage
- Neuroprotective Agents/therapeutic use
- Organ Specificity
- Random Allocation
- Swine
Collapse
Affiliation(s)
- Viktória Kovács
- Department of Physiology, University of Szeged Faculty of Medicine, H-6720 Szeged, Hungary; (G.R.); (V.T.-S.); (V.V.); (J.N.); (F.D.)
| | | | | | | | | | | |
Collapse
|
29
|
Brain interstitial pH changes in the subacute phase of hypoxic-ischemic encephalopathy in newborn pigs. PLoS One 2020; 15:e0233851. [PMID: 32470084 PMCID: PMC7259698 DOI: 10.1371/journal.pone.0233851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/13/2020] [Indexed: 01/24/2023] Open
Abstract
Brain interstitial pH (pHbrain) alterations play an important role in the mechanisms of neuronal injury in neonatal hypoxic-ischemic encephalopathy (HIE) induced by perinatal asphyxia. The newborn pig is an established large animal model to study HIE, however, only limited information on pHbrain alterations is available in this species and it is restricted to experimental perinatal asphyxia (PA) and the immediate reventilation. Therefore, we sought to determine pHbrain over the first 24h of HIE development in piglets. Anaesthetized, ventilated newborn pigs (n = 16) were instrumented to control major physiological parameters. pHbrain was determined in the parietal cortex using a pH-selective microelectrode. PA was induced by ventilation with a gas mixture containing 6%O2-20%CO2 for 20 min, followed by reventilation with air for 24h, then the brains were processed for histopathology assessment. The core temperature was maintained unchanged during PA (38.4±0.1 vs 38.3±0.1°C, at baseline versus the end of PA, respectively; mean±SEM). In the arterial blood, PA resulted in severe hypoxia (PaO2: 65±4 vs 23±1*mmHg, *p<0.05) as well as acidosis (pHa: 7.53±0.03 vs 6.79±0.02*) that is consistent with the observed hypercapnia (PaCO2: 37±3 vs 160±6*mmHg) and lactacidemia (1.6±0.3 vs 10.3±0.7*mmol/L). Meanwhile, pHbrain decreased progressively from 7.21±0.03 to 5.94±0.11*. Reventilation restored pHa, blood gases and metabolites within 4 hours except for PaCO2 that remained slightly elevated. pHbrain returned to 7.0 in 29.4±5.5 min and then recovered to its baseline level without showing secondary alterations during the 24 h observation period. Neuropathological assessment also confirmed neuronal injury. In conclusion, in spite of the severe acidosis and alterations in blood gases during experimental PA, pHbrain recovered rapidly and notably, there was no post-asphyxia hypocapnia that is commonly observed in many HIE babies. Thus, the neuronal injury in our piglet model is not associated with abnormal pHbrain or low PaCO2 over the first 24 h after PA.
Collapse
|