1
|
Díaz-Navarro M, Irigoyen Von-Sierakowski Á, Palomo M, Escribano P, Guinea J, Burillo A, Galar A, Muñoz P, Guembe M. In vitro study to assess modulation of Candida biofilm by Escherichia coli from vaginal strains. Biofilm 2023; 5:100116. [PMID: 37125396 PMCID: PMC10130766 DOI: 10.1016/j.bioflm.2023.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023] Open
Abstract
Background Vulvovaginal candidiasis (VVC) is caused by biofilm formation and epithelial invasion. In addition, Escherichia coli (EC) can establish a vaginal intracellular reservoir modulating Candida spp. biofilm production. We aimed to analyze the behavior of Candida albicans (CA) and EC biofilm both in single cultures and in co-cultures. Methods We prospectively collected CA and EC isolates from vaginal swabs over 6 months. We selected positive cultures with both CA and EC (cases) and a comparator group with either CA or EC (controls). We analyzed overall biomass production and metabolic activity in single cultures and in co-cultures based on staining assays, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) to assess biofilm occupation. We also analyzed clinical manifestations. Results We cultured 455 samples, 16 (3.5%) of which had CA and EC (cases); only CA or EC (controls) was detected, respectively, in 72 (15.8%) and 98 (21.5%). Biomass production and metabolic activity were significantly more pronounced in co-cultures in both groups. CLSM and SEM, on the other hand, showed the biofilm of each species to be significantly reduced when they were cultured together, with higher values in CA (percentage biofilm reduction: CA, 95.8% vs. EC, 36.2%, p < 0.001). There were no clinically significant differences between co-infected patients and patients infected only by C. albicans. Conclusion Ours is the first study assessing co-cultures of CA and EC in a large collection of samples. We observed that coinfection of CA and EC was unusual (3.5%) and promoted high biomass, whereas microscopy enabled us to detect a reduction in biofilm production when microorganisms were co-cultured. No differences in symptoms were observed.
Collapse
Affiliation(s)
- Marta Díaz-Navarro
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | - María Palomo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- School of Medicine, Universidad Complutense de Madrid, Spain
| | - Pilar Escribano
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- School of Medicine, Universidad Complutense de Madrid, Spain
| | - Jesús Guinea
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- School of Medicine, Universidad Complutense de Madrid, Spain
| | - Almudena Burillo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- School of Medicine, Universidad Complutense de Madrid, Spain
| | - Alicia Galar
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- School of Medicine, Universidad Complutense de Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- School of Medicine, Universidad Complutense de Madrid, Spain
| | - María Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Corresponding author. Dr. Esquerdo, 46. 28007, Madrid, Spain.
| |
Collapse
|
2
|
Masfufatun M, Purbowati R, Arum NA, Yasinta MS, Sumarsih S, Baktir A. An intestinal Candida albicans model for monomicrobial and polymicrobial biofilms and effects of hydrolases and the Bgl2 ligand. Vet World 2022; 15:1134-1140. [PMID: 35698505 PMCID: PMC9178581 DOI: 10.14202/vetworld.2022.1134-1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Candida albicans is the most prevalent human fungal pathogen. In biofilms, C. albicans becomes more resistant to antifungal agents because of the production of an extracellular matrix (ECM) that protects the yeast cells. This study aimed to determine the effects of hydrolase enzymes and the Bgl2 ligand on monomicrobial and polymicrobial biofilms.
Materials and Methods: Biofilm induction in rats was carried out using streptomycin (25 mg/kg) and gentamicin (7.5 mg/kg) administered orally once per day for 5 days. Rats were injected subcutaneously with cortisone acetate (225 mg/kg) as an immunosuppressant on day 5. In addition, rats were orally administered C. albicans for the single microbial model and a combination of C. albicans with Escherichia coli for the polymicrobial model. Following the biofilm production, the groups were treated with glucosamine (8.57 mg/kg body weight) and Achatina fulica hydrolases (1.5 mL) orally for 2 weeks. The reduction of the biofilm was measured using confocal laser scanning microscopy (CLSM). Data were analyzed using a t-test, with a significance value of 95%.
Results: CLSM images revealed a strong association between C. albicans and E. coli in the polymicrobial biofilm. On the contrary, the combination treatment using glucosamine and A. fulica hydrolases reduced the ECM of the single microbial biofilm (53.58%). However, treatment effectiveness against the matrix (19.17%) was reduced in the polymicrobial model.
Conclusion: There is a strong association between C. albicans and E. coli in the formation of polymicrobial biofilms. The combination of glucosamine and the A. fulica enzyme can reduce the single microbial biofilm ECM; however, it is ineffective in the polymicrobial model.
Collapse
Affiliation(s)
- Masfufatun Masfufatun
- Department of Biochemistry, Faculty of Medicine, University of Wijaya Kusuma Surabaya, Surabaya, Indonesia
| | - Rini Purbowati
- Department of Biomedicine and Biomolecular, Faculty of Medicine, University of Wijaya Kusuma Surabaya, Surabaya, Indonesia
| | - Nira A. Arum
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia
| | - Mey S. Yasinta
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia
| | - Sri Sumarsih
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia
| | - Afaf Baktir
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
3
|
Effects of lipid emulsions on the formation of Escherichia coli-Candida albicans mixed-species biofilms on PVC. Sci Rep 2021; 11:16929. [PMID: 34413406 PMCID: PMC8376934 DOI: 10.1038/s41598-021-96385-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
Patients receiving lipid emulsions are at increased risk of contracting catheter-related bloodstream infections (CRBSIs) in the clinic. More than 15% of CRBSIs are polymicrobial. The objective of this study was to explore the effects of lipid emulsions on the formation of Escherichia coli (E. coli)–Candida albicans (C. albicans) mixed-species biofilms (BFs) on polyvinyl chloride (PVC) surfaces and the underlying mechanism. Mixed-species BFs were produced by coculturing E. coli and C. albicans with PVC in various concentrations of lipid emulsions. Crystal violet staining and XTT assays were performed to test the mixed-species BF biomass and the viability of microbes in the BFs. The microstructures of the BFs were observed by an approach that combined confocal laser scanning microscopy, fluorescence in situ hybridization, and scanning electron microscopy. The study found that lipid emulsions could promote the formation of E. coli–C. albicans mixed-species BFs, especially with 10% lipid emulsions. The mechanism by which lipid emulsions promote mixed-species BF formation may involve significant upregulation of the expression of the flhDC, iha, HTA1, and HWP1 genes, which are associated with bacterial motility, adhesion, and BF formation. The results derived from this study necessitate strict aseptic precautions when handling lipid emulsions and avoiding the use of high concentrations of lipid emulsions for as long as possible.
Collapse
|
4
|
Ch’ng JH, Chong KKL, Lam LN, Wong JJ, Kline KA. Biofilm-associated infection by enterococci. Nat Rev Microbiol 2018; 17:82-94. [DOI: 10.1038/s41579-018-0107-z] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Ipe DS, Horton E, Ulett GC. The Basics of Bacteriuria: Strategies of Microbes for Persistence in Urine. Front Cell Infect Microbiol 2016; 6:14. [PMID: 26904513 PMCID: PMC4744864 DOI: 10.3389/fcimb.2016.00014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/22/2016] [Indexed: 01/09/2023] Open
Abstract
Bacteriuria, the presence of bacteria in urine, is associated with asymptomatic, as well as symptomatic, urinary tract infection (UTI). Bacteriuria underpins some of the dynamics of microbial colonization of the urinary tract, and probably impacts the progression and persistence of infection in some individuals. Recent molecular discoveries in vitro have elucidated how some key bacterial traits can enable organisms to survive and grow in human urine as a means of microbial fitness adaptation for UTI. Several microbial characteristics that confer bacteruric potential have been identified including de novo synthesis of guanine, relative resistance to D-serine, and catabolism of malic acid. Microbial characteristics such as these are increasingly being defined through the use of synthetic human urine (SHU) in vitro as a model to mimic the in vivo environment that bacteria encounter in the bladder. There is considerable variation in the SHU model systems that have been used to study bacteriuria to date, and this influences the utility of these models. In this review, we discuss recent advances in our understanding of bacteruric potential with a focus on the specific mechanisms underlying traits that promote the growth of bacteria in urine. We also review the application of SHU in research studies modeling UTI and discuss the chemical makeup, and benefits and limitations that are encountered in utilizing SHU to study bacterial growth in urine in vitro.
Collapse
Affiliation(s)
| | | | - Glen C. Ulett
- School of Medical Science, Menzies Health Institute Queensland, Griffith UniversityGold Coast, QLD, Australia
| |
Collapse
|
6
|
Abstract
Interactions between microbes are complex and play an important role in the pathogenesis of infections. These interactions can range from fierce competition for nutrients and niches to highly evolved cooperative mechanisms between different species that support their mutual growth. An increasing appreciation for these interactions, and desire to uncover the mechanisms that govern them, has resulted in a shift from monomicrobial to polymicrobial biofilm studies in different disease models. Here we provide an overview of biofilm models used to study select polymicrobial infections and highlight the impact that the interactions between microbes within these biofilms have on disease progression. Notable recent advances in the development of polymicrobial biofilm-associated infection models and challenges facing the study of polymicrobial biofilms are addressed.
Collapse
Affiliation(s)
- Rebecca A Gabrilska
- Departments of Surgery & Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Kendra P Rumbaugh
- Departments of Surgery & Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
7
|
Niemirowicz K, Swiecicka I, Wilczewska AZ, Markiewicz KH, Surel U, Kułakowska A, Namiot Z, Szynaka B, Bucki R, Car H. Growth arrest and rapid capture of select pathogens following magnetic nanoparticle treatment. Colloids Surf B Biointerfaces 2015; 131:29-38. [PMID: 25942700 DOI: 10.1016/j.colsurfb.2015.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/06/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Thorough understanding of magnetic nanoparticle (MNP) properties is essential for developing new theranostics. In this study, we provide evidence that non-modified magnetic iron oxide nanoparticles and their functionalized derivatives may be used to restrict growth and capture different pathogens. Coprecipitation of Fe(2+) and Fe(3+) ions in an alkaline solution was used to synthesize MNPs that subsequently were functionalized by gold and aminosilane coating. Transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) were used to assess their physicochemical properties. A significant decrease of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans outgrown from medium after addition of MNPs or their derivatives was observed during 24h culture. Measurement of optical density revealed that using MNPs, these pathogens can be quickly captured and removed (with efficiency reaching almost 100%) from purposely infected saline buffer and body fluids such as human blood plasma, serum, abdominal fluids and cerebrospinal fluids. These effects depend on nanoparticle concentration, surface chemistry, the type of pathogen, as well as the surrounding environment.
Collapse
Affiliation(s)
- Katarzyna Niemirowicz
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; Department of Experimental Pharmacology, Medical University of Białystok, Szpitalna 37, 15-295 Białystok, Poland.
| | - Izabela Swiecicka
- Department of Microbiology, University of Białystok, J. K. Ciołkowski Street 1, 15-245 Białystok, Poland; Laboratory of Applied Microbiology, University of Białystok, J. K. Ciołkowski Street 1, 15-245 Białystok, Poland
| | | | - Karolina H Markiewicz
- Institute of Chemistry, University of Białystok, Hurtowa 1, 15-399 Białystok, Poland
| | - Urszula Surel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Alina Kułakowska
- Department of Neurology, Medical University of Białystok, M. Skłodowskiej - Curie 24A, 15-276 Białystok, Poland
| | - Zbigniew Namiot
- Department of Physiology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| | - Beata Szynaka
- Department of Histology and Embryology, Medical University of Białystok, Waszyngtona 13, 15-269 Białystok, Poland
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, IX WiekówKielc 19, 25-317 Kielce, Poland
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Białystok, Szpitalna 37, 15-295 Białystok, Poland
| |
Collapse
|
8
|
Fungal β-1,3-glucan increases ofloxacin tolerance of Escherichia coli in a polymicrobial E. coli/Candida albicans biofilm. Antimicrob Agents Chemother 2015; 59:3052-8. [PMID: 25753645 DOI: 10.1128/aac.04650-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/04/2015] [Indexed: 12/19/2022] Open
Abstract
In the past, biofilm-related research has focused mainly on axenic biofilms. However, in nature, biofilms are often composed of multiple species, and the resulting polymicrobial interactions influence industrially and clinically relevant outcomes such as performance and drug resistance. In this study, we show that Escherichia coli does not affect Candida albicans tolerance to amphotericin or caspofungin in an E. coli/C. albicans biofilm. In contrast, ofloxacin tolerance of E. coli is significantly increased in a polymicrobial E. coli/C. albicans biofilm compared to its tolerance in an axenic E. coli biofilm. The increased ofloxacin tolerance of E. coli is mainly biofilm specific, as ofloxacin tolerance of E. coli is less pronounced in polymicrobial E. coli/C. albicans planktonic cultures. Moreover, we found that ofloxacin tolerance of E. coli decreased significantly when E. coli/C. albicans biofilms were treated with matrix-degrading enzymes such as the β-1,3-glucan-degrading enzyme lyticase. In line with a role for β-1,3-glucan in mediating ofloxacin tolerance of E. coli in a biofilm, we found that ofloxacin tolerance of E. coli increased even more in E. coli/C. albicans biofilms consisting of a high-β-1,3-glucan-producing C. albicans mutant. In addition, exogenous addition of laminarin, a polysaccharide composed mainly of poly-β-1,3-glucan, to an E. coli biofilm also resulted in increased ofloxacin tolerance. All these data indicate that β-1,3-glucan from C. albicans increases ofloxacin tolerance of E. coli in an E. coli/C. albicans biofilm.
Collapse
|