1
|
Trier NH, Friis T. Production of Antibodies to Peptide Targets Using Hybridoma Technology. Methods Mol Biol 2024; 2821:135-156. [PMID: 38997486 DOI: 10.1007/978-1-0716-3914-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Hybridoma technology is a well-established and indispensable tool for generating high-quality monoclonal antibodies and has become one of the most common methods for monoclonal antibody production. In this process, antibody-producing B cells are isolated from mice following immunization of mice with a specific immunogen and fused with an immortal myeloma cell line to form antibody-producing hybridoma cell lines. Hybridoma-derived monoclonal antibodies not only serve as powerful research and diagnostic reagents but have also emerged as the most rapidly expanding class of therapeutic biologicals. In spite of the development of new high-throughput monoclonal antibody generation technologies, hybridoma technology still is applied for antibody production due to its ability to preserve innate functions of immune cells and to preserve natural cognate antibody paring information. In this chapter, an overview of hybridoma technology and the laboratory procedures used for hybridoma production and antibody screening of peptide-specific antibodies are presented.
Collapse
Affiliation(s)
| | - Tina Friis
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen S, Denmark
| |
Collapse
|
2
|
González-Ballesteros N, Diego-González L, Lastra-Valdor M, Grimaldi M, Cavazza A, Bigi F, Rodríguez-Argüelles MC, Simón-Vázquez R. Immunomodulatory and Antitumoral Activity of Gold Nanoparticles Synthesized by Red Algae Aqueous Extracts. Mar Drugs 2022; 20:md20030182. [PMID: 35323481 PMCID: PMC8953345 DOI: 10.3390/md20030182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/11/2022] Open
Abstract
This study reports on the green and cost-efficient synthesis of gold nanoparticles from three different red algae extracts. The nanoparticles synthesized were fully characterized by UV-Vis spectroscopy, HRTEM, and Z-potential. Relevant components occurring in the extracts, such as polysaccharides or phenolic content, were assessed by analytical techniques such as spectrophotometric assays and liquid chromatography. Finally, the antioxidant, antitumoral, and anti-inflammatory potential of both the extracts and the gold nanoparticles synthesized were analyzed in order to determine a possible synergistic effect on the nanoparticles. The results obtained confirmed the obtainment of gold nanoparticles with significant potential as immunotherapeutic agents. The therapeutic potential of these nanoparticles could be higher than that of inert gold nanoparticles loaded with bioactive molecules since the former would allow for higher accumulation into the targeted tissue.
Collapse
Affiliation(s)
| | - Lara Diego-González
- CINBIO, Immunology Group, Universidade de Vigo, 36310 Vigo, Spain; (L.D.-G.); (R.S.-V.)
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Alvaro Cunqueiro, 36312 Vigo, Spain
| | | | - Maria Grimaldi
- Dipartimento Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, 43124 Parma, Italy; (M.G.); (A.C.); (F.B.)
| | - Antonella Cavazza
- Dipartimento Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, 43124 Parma, Italy; (M.G.); (A.C.); (F.B.)
| | - Franca Bigi
- Dipartimento Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, 43124 Parma, Italy; (M.G.); (A.C.); (F.B.)
- Institute of Materials for Electronics and Magnetism, National Research Council, 43124 Parma, Italy
| | | | - Rosana Simón-Vázquez
- CINBIO, Immunology Group, Universidade de Vigo, 36310 Vigo, Spain; (L.D.-G.); (R.S.-V.)
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Alvaro Cunqueiro, 36312 Vigo, Spain
| |
Collapse
|
3
|
Latov N. Immune mechanisms, the role of complement, and related therapies in autoimmune neuropathies. Expert Rev Clin Immunol 2021; 17:1269-1281. [PMID: 34751638 DOI: 10.1080/1744666x.2021.2002147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Autoimmune neuropathies have diverse presentations and underlying immune mechanisms. Demonstration of efficacy of therapeutic agents that inhibit the complement cascade would confirm the role of complement activation. AREAS COVERED A review of the pathophysiology of the autoimmune neuropathies, to identify those that are likely to be complement mediated. EXPERT OPINION Complement mediated mechanisms are implicated in the acute and chronic neuropathies associated with IgG or IgM antibodies that target the Myelin Associated Glycoprotein (MAG) or gangliosides in the peripheral nerves. Antibody and complement mechanisms are also suspected in the Guillain-Barré syndrome and chronic inflammatory demyelinating neuropathy, given the therapeutic response to plasmapheresis or intravenous immunoglobulins, even in the absence of an identifiable target antigen. Complement is unlikely to play a role in paraneoplastic sensory neuropathy associated with antibodies to HU/ANNA-1 given its intracellular localization. In chronic demyelinating neuropathy with anti-nodal/paranodal CNTN1, NFS-155, and CASPR1 antibodies, myotonia with anti-VGKC LGI1 or CASPR2 antibodies, or autoimmune autonomic neuropathy with anti-gAChR antibodies, the response to complement inhibitory agents would depend on the extent to which the antibodies exert their effects through complement dependent or independent mechanisms. Complement is also likely to play a role in Sjogren's, vasculitic, and cryoglobulinemic neuropathies.
Collapse
Affiliation(s)
- Norman Latov
- Department of Neurology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
4
|
Ozeki T, Mizuno M, Iguchi D, Kojima H, Kim H, Suzuki Y, Kinashi H, Ishimoto T, Maruyama S, Ito Y. C1 inhibitor mitigates peritoneal injury in zymosan-induced peritonitis. Am J Physiol Renal Physiol 2021; 320:F1123-F1132. [PMID: 33818127 DOI: 10.1152/ajprenal.00600.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peritonitis, due to a fungal or bacterial infection, leads to injury of the peritoneal lining and thereby forms a hazard for the long-term success of peritoneal dialysis (PD) and remains a lethal complication in patients with PD. This study investigated whether C1 inhibitor (C1-INH) could protect against the progression of peritoneal injuries with five daily administrations of zymosan after mechanical scraping of the rat peritoneum to mimic fungal peritonitis. Severe peritoneal injuries were seen in this model, accompanied by fibrinogen/fibrin exudation and peritoneal deposition of complement activation products such as activated C3 and C5b-9. However, intraperitoneal injection of C1-INH decreased peritoneal depositions of activated C3 and C5b-9, ameliorated peritoneal thickening, reduced the influx of inflammatory cells, and prevented the production of peritoneal fibrous layers with both one and two doses of C1-INH each day. Our results suggest that C1-INH might be useful to protect against peritoneal injuries after causes of peritonitis such as fungal infection. This clinically available agent may thus help extend the duration of PD.NEW & NOTEWORTHY Peritoneal injuries associated with peritonitis comprise an important issue to prevent long-term peritoneal dialysis (PD) therapy. Here, we showed that C1 inhibitor (C1-INH), as an anticomplement agent, protected against peritoneal injuries in a peritonitis animal model related to fungal infection. Therefore, C1-INH might be useful to protect against peritoneal injuries after peritonitis due to fungal infection. This clinically available agent may thus help extend the duration of PD.
Collapse
Affiliation(s)
- Toshikazu Ozeki
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Mizuno
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daiki Iguchi
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kojima
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hangsoo Kim
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Suzuki
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kinashi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan
| | - Takuji Ishimoto
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoichi Maruyama
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
5
|
Peptides, Antibodies, Peptide Antibodies and More. Int J Mol Sci 2019; 20:ijms20246289. [PMID: 31847088 PMCID: PMC6941022 DOI: 10.3390/ijms20246289] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
The applications of peptides and antibodies to multiple targets have emerged as powerful tools in research, diagnostics, vaccine development, and therapeutics. Antibodies are unique since they, in theory, can be directed to any desired target, which illustrates their versatile nature and broad spectrum of use as illustrated by numerous applications of peptide antibodies. In recent years, due to the inherent limitations such as size and physical properties of antibodies, it has been attempted to generate new molecular compounds with equally high specificity and affinity, albeit with relatively low success. Based on this, peptides, antibodies, and peptide antibodies have established their importance and remain crucial reagents in molecular biology.
Collapse
|