1
|
Li R, Cao L. The role of tumor-infiltrating lymphocytes in triple-negative breast cancer and the research progress of adoptive cell therapy. Front Immunol 2023; 14:1194020. [PMID: 37275874 PMCID: PMC10233026 DOI: 10.3389/fimmu.2023.1194020] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
The treatment outcome of breast cancer is closely related to estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Triple-negative breast cancer (TNBC) lacking ER, PR, and HER2 expression has limited treatment options and a poor prognosis. Tumor-infiltrating lymphocytes (TILs) play a role in promoting or resisting tumors by affecting the tumor microenvironment and are known as key regulators in breast cancer progression. However, treatments for TNBC (e.g., surgery, chemotherapy and radiotherapy) have non-satisfaction's curative effect so far. This article reviews the role of different types of TILs in TNBC and the research progress of adoptive cell therapy, aiming to provide new therapeutic approaches for TNBC.
Collapse
Affiliation(s)
- Ruonan Li
- Oncology Department, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Lili Cao
- Oncology Department, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine and Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
2
|
Santana-Krímskaya SE, Kawas J, Zarate-Triviño DG, Ramos-Zayas Y, Rodríguez-Padilla C, Franco-Molina MA. Orthotopic and heterotopic triple negative breast cancer preclinical murine models: A tumor microenvironment comparative. Res Vet Sci 2022; 152:364-371. [DOI: 10.1016/j.rvsc.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022]
|
3
|
Shi ZY, Zhang SX, Fan D, Li CH, Cheng ZH, Xue Y, Wu LX, Lu KY, Yang SY, Cheng Y, Wu ZF, Gao C, Li XF, Liu HY, Li SJ. Dynamic Immune Function Changes Before and After the First Radioactive Iodine Therapy After Total Resection of Differentiated Thyroid Carcinoma. Front Immunol 2022; 13:901263. [PMID: 35844520 PMCID: PMC9280633 DOI: 10.3389/fimmu.2022.901263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
The effects of total thyroidectomy or radioactive iodine therapy on immune activation and suppression of the tumor microenvironment remain unknown. We aimed to investigate the effects of these treatments on the immune function in patients with differentiated thyroid carcinoma (DTC). Our cohort included 45 patients with DTC treated with total thyroidectomy and radioactive iodine therapy (RAIT). Immune function tests were performed by flow cytometry at 0, 30, and 90 days post-RAIT. Both the percentage and absolute number of circulating regulatory T cells were significantly lower in the postoperative DTC compared to the healthy controls. Notably, the absolute number of multiple lymphocyte subgroups significantly decreased at 30 days post-RAIT compared to those pre-RAIT. The absolute counts of these lymphocytes were recovered at 90 days post-RAIT, but not at pre-RAIT levels. Additionally, the Th17 cell percentage before RAIT was positively correlated with thyroglobulin (Tg) levels after RAIT. The tumor burden might contribute to increased levels of circulating Tregs. In conclusion, RAIT caused transient radiation damage in patients with DTC and the percentage of Th17 cells before RAIT could be a significant predictor of poor prognosis in patients with DTC.
Collapse
Affiliation(s)
- Zhi-Yong Shi
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Di Fan
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Cai-Hong Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhe-Hao Cheng
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Xue
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Li-Xiang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ke-Yi Lu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Su-Yun Yang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Cheng
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhi-Fang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiao-Feng Li
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hai-Yan Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Hai-Yan Liu, ; Si-Jin Li,
| | - Si-Jin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
- *Correspondence: Hai-Yan Liu, ; Si-Jin Li,
| |
Collapse
|
4
|
Zahran AM, El-Badawy O, Kamel LM, Rayan A, Rezk K, Abdel-Rahim MH. Accumulation of Regulatory T Cells in Triple Negative Breast Cancer Can Boost Immune Disruption. Cancer Manag Res 2021; 13:6019-6029. [PMID: 34377021 PMCID: PMC8349183 DOI: 10.2147/cmar.s285128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Background and Aim The present study was conducted to evaluate the number of Tregs in triple negative breast cancer (TNBC), in normal breast parenchyma and in the peripheral blood of these patients and controls, in addition to their correlations with the clinico-pathologic features and the outcomes of TNBC. Methods Thirty adult treatment-naïve women with non-metastatic TNBC were recruited. In addition, 20 ages matched healthy females participated as a control group. Peripheral blood samples were collected from all participants in tubes containing heparin, fresh tumor tissues were also obtained from all patients undergoing surgery, and 20 normal breast tissue samples were obtained from the same patients’ areas adjacent to the safety margins; all these samples were taken for flow cytometric detection of Tregs. Results The mean percentages of CD4+CD25+highT cells and Tregs were higher in TNBC peripheral blood than healthy controls and in malignant tissue than normal tissue. Moreover, the frequencies of tumor-infiltrating CD4+T cells and Tregs were exceeding those in the peripheral blood of cancer patients. Only tumor-infiltrating Tregs have shown increasing levels with the increase in the tumor size and were significantly higher in patients with local recurrences than those without recurrence. In addition, Tregs showed significant inverse relation with DFS and direct relation with the level of the peripheral Tregs. Conclusion The findings of the current study support the possibility that TNBC microenvironment conveys specific characteristics on Tregs distinguishing them from those in normal breast tissue or Tregs in peripheral blood, improving the capabilities of tumor-infiltrating Tregs to enhance tumor growth, local recurrence and reduce the DFS.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Omnia El-Badawy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Lamiaa M Kamel
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amal Rayan
- Clinical Oncology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Khalid Rezk
- Surgical Oncology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Mona H Abdel-Rahim
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Keup C, Kimmig R, Kasimir-Bauer S. Liquid Biopsies to Evaluate Immunogenicity of Gynecological/Breast Tumors: On the Way to Blood-Based Biomarkers for Immunotherapies. Breast Care (Basel) 2020; 15:470-480. [PMID: 33223990 PMCID: PMC7650128 DOI: 10.1159/000510509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite the assumption of breast cancer (BC) as a cold, non-immunogenic tumor, immune checkpoint inhibitor (ICI) therapy is favorable for a subgroup of patients. Immunohistochemical assessment of the programmed cell death ligand 1 (PD-L1) is the only approved companion diagnostic for anti-PD-L1 therapy in metastatic triple-negative BC; however, challenges regarding the standardization of PD-L1 scoring in tumor tissue still remain. Consequently, to select patients most likely to respond to ICI, blood-based biomarkers are urgently needed. SUMMARY AND KEY MESSAGES Liquid biopsy, comprising circulating immune cells, circulating tumor cells and extracellular vesicles, as well as their surface proteins, is of high potential, and these analytes were already shown to be molecular correlates or regulators of the evasion from antitumoral immune reaction. Liquid biopsy, also enabling the evaluation of tumor mutational burden (TMB), microsatellite instability, and the T-cell receptor repertoire, allows serial sampling for monitoring purposes and reflects intra-tumoral heterogeneity which qualifies as marker for immunogenicity. Only a very few studies have already elucidated the potential of these analytes as biomarkers under ICI therapy. Nonetheless, the topic is of growing interest and has high relevance for the future. However, for clinical implementation, these multifarious analytes first need to pass robust standardization and validation procedures.
Collapse
Affiliation(s)
| | | | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| |
Collapse
|
6
|
Levels of different subtypes of tumour-infiltrating lymphocytes correlate with each other, with matched circulating lymphocytes, and with survival in breast cancer. Breast Cancer Res Treat 2020; 183:49-59. [PMID: 32577938 PMCID: PMC7376517 DOI: 10.1007/s10549-020-05757-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023]
Abstract
Purpose Breast cancer tumour-infiltrating lymphocytes associate with clinico-pathological factors, including survival, although the literature includes many conflicting findings. Our aim was to assess these associations for key lymphocyte subtypes and in different tumour compartments, to determine whether these provide differential correlations and could, therefore, explain published inconsistencies. Uniquely, we also examine whether infiltrating levels merely reflect systemic lymphocyte levels or whether local factors are predominant in recruitment. Methods Immunohistochemistry was used to detect tumour-infiltrating CD20+ (B), CD4+ (helper T), CD8+ (cytotoxic T) and FoxP3+ (regulatory T) cells in breast cancers from 62 patients, with quantification in tumour stroma, tumour cell nests, and tumour margins. Levels were analysed with respect to clinico-pathological characteristics and matched circulating levels (determined by flow-cytometry). Results CD4+ lymphocytes were the most prevalent subtype in tumour stroma and at tumour edge and CD8+ lymphocytes were most prevalent in tumour nests; FoxP3+ lymphocytes were rarest in all compartments. High grade or hormone receptor negative tumours generally had significantly increased lymphocytes, especially in tumour stroma. Only intra-tumoural levels of CD8+ lymphocytes correlated significantly with matched circulating levels (p < 0.03), suggesting that recruitment is mainly unrelated to systemic activity. High levels of stromal CD4+ and CD20+ cells associated with improved survival in hormone receptor negative cases (p < 0.04), while tumour nest CD8+ and FoxP3+ cells associated with poor survival in hormone receptor positives (p < 0.005). Conclusions Lymphocyte subtype and location define differential impacts on tumour biology, therefore, roles of tumour-infiltrating lymphocytes will only be unravelled through thorough analyses that take this into account. Electronic supplementary material The online version of this article (10.1007/s10549-020-05757-5) contains supplementary material, which is available to authorized users.
Collapse
|