1
|
Miyazato P, Noguchi T, Ogawa F, Sugimoto T, Fauzyah Y, Sasaki R, Ebina H. 1mΨ influences the performance of various positive-stranded RNA virus-based replicons. Sci Rep 2024; 14:17634. [PMID: 39085360 PMCID: PMC11292005 DOI: 10.1038/s41598-024-68617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Self-amplifying RNAs (saRNAs) are versatile vaccine platforms that take advantage of a viral RNA-dependent RNA polymerase (RdRp) to amplify the messenger RNA (mRNA) of an antigen of interest encoded within the backbone of the viral genome once inside the target cell. In recent years, more saRNA vaccines have been clinically tested with the hope of reducing the vaccination dose compared to the conventional mRNA approach. The use of N1-methyl-pseudouridine (1mΨ), which enhances RNA stability and reduces the innate immune response triggered by RNAs, is among the improvements included in the current mRNA vaccines. In the present study, we evaluated the effects of this modified nucleoside on various saRNA platforms based on different viruses. The results showed that different stages of the replication process were affected depending on the backbone virus. For TNCL, an insect virus of the Alphanodavirus genus, replication was impaired by poor recognition of viral RNA by RdRp. In contrast, the translation step was severely abrogated in coxsackievirus B3 (CVB3), a member of the Picornaviridae family. Finally, the effects of 1mΨ on Semliki forest virus (SFV), were not detrimental in in vitro studies, but no advantages were observed when immunogenicity was tested in vivo.
Collapse
Affiliation(s)
- Paola Miyazato
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Takafumi Noguchi
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Fumiyo Ogawa
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Takeshi Sugimoto
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Yuzy Fauzyah
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Ryo Sasaki
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
| | - Hirotaka Ebina
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan.
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan.
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
2
|
Singh D, Mittal N, Mittal P, Tiwari N, Khan SUD, Ali MAM, Chaudhary AA, Siddiqui MH. In silico molecular screening of bioactive natural compounds of rosemary essential oil and extracts for pharmacological potentials against rhinoviruses. Sci Rep 2024; 14:17426. [PMID: 39075176 PMCID: PMC11286848 DOI: 10.1038/s41598-024-68450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024] Open
Abstract
Rhinoviruses (RVs) cause upper respiratory tract infections and pneumonia in children and adults. These non-enveloped viruses contain viral coats of four capsid proteins: VP1, VP2, VP3, and VP4. The canyon on VP1 used cell surface receptor ICAM-1 as the site of attachment and for the internalization of viruses. To date, there has been no drug or vaccine available against RVs. In this study, bioactive natural compounds of rosemary (Salvia rosmarinus L.), which are known for their pharmacological potential, were considered to target the VP1 protein. A total of 30 bioactive natural compounds of rosemary were taken as ligands to target viral proteins. The PkCSM tool was used to detect their adherence to Lipinski's rule of five and the ADMET properties of the selected ligands. Further, the CB-Dock tool was used for molecular docking studies between the VP1 protein and ligands. Based on the molecular docking and ADMET profiling results, phenethyl amine (4 methoxy benzyl) was selected as the lead compound. A comparative study was performed between the lead compound and two antiviral drugs, Placonaril and Nitazoxanide, to investigate the higher potential of natural compounds over synthetic drugs. Placonaril also targets VP1 but failed in clinical trials while Nitazoxanide was examined in clinical trials against rhinoviruses. It was discovered from this study that the (4 methoxy benzyl) phenethyl amine exhibited less toxicity in comparison to other tested drugs against RVs. More research is needed to determine its potential and make it a good medication against RVs.
Collapse
Affiliation(s)
- Dhananjay Singh
- Department of Biosciences, Integral University, Kursi Road, Lucknow, 226026, India
| | - Nishu Mittal
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, 225003, India
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Neeraj Tiwari
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, 225003, India
| | - Salah Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia.
| | | |
Collapse
|
3
|
Raza S, Poria R, Kala D, Sharma N, Sharma AK, Florien N, Tuli HS, Kaushal A, Gupta S. Innovations in dengue virus detection: An overview of conventional and electrochemical biosensor approaches. Biotechnol Appl Biochem 2024; 71:481-500. [PMID: 38225854 DOI: 10.1002/bab.2553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
Globally, people are in great threat due to the highly spreading of viral infectious diseases. Every year like 100-300 million cases of infections are found, and among them, above 80% are not recognized and irrelevant. Dengue virus (DENV) is an arbovirus infection that currently infects people most frequently. DENV encompasses four viral serotypes, and they each express comparable sign. From a mild febrile sickness to a potentially fatal dengue hemorrhagic fever, dengue can induce a variety of symptoms. Presently, the globe is being challenged by the untimely identification of dengue infection. Therefore, this review summarizes advances in the detection of dengue from conventional methods (nucleic acid-based, polymerase chain reaction-based, and serological approaches) to novel biosensors. This work illustrates an extensive study of the current designs and fabrication approaches involved in the formation of electrochemical biosensors for untimely identifications of dengue. Additionally, in electrochemical sensing of DENV, we skimmed through significances of biorecognition molecules like lectins, nucleic acid, and antibodies. The introduction of emerging techniques such as the CRISPR/Cas' system and their integration with biosensing platforms has also been summarized. Furthermore, the review revealed the importance of electrochemical approach compared with traditional diagnostic methods.
Collapse
Affiliation(s)
- Shadan Raza
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Renu Poria
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Deepak Kala
- Centera Laboratories, Institute of High Pressure Physics PAS, Warsaw, Poland
| | - Nishant Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Anil K Sharma
- Department of Biotechnology, Amity University of Punjab, Mohali, Punjab, India
| | - Nkurunziza Florien
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Hardeep S Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Ankur Kaushal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Shagun Gupta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| |
Collapse
|
4
|
Atallah OO, Yassin SM, Verchot J. New Insights into Hop Latent Viroid Detection, Infectivity, Host Range, and Transmission. Viruses 2023; 16:30. [PMID: 38257731 PMCID: PMC10819085 DOI: 10.3390/v16010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Hop latent viroid (HLVd), a subviral pathogen from the family Pospiviroidae, is a major threat to the global cannabis industry and is the causative agent for "dudding disease". Infected plants can often be asymptomatic for a period of growth and then develop symptoms such as malformed and yellowing leaves, as well as stunted growth. During flowering, HLVd-infected plants show reduced levels of valuable metabolites. This study was undertaken to expand our basic knowledge of HLVd infectivity, transmission, and host range. HLVd-specific primers were used for RT-PCR detection in plant samples and were able to detect HLVd in as little as 5 picograms of total RNA. A survey of hemp samples obtained from a diseased production system proved sole infection of HLVd (72%) with no coexistence of hop stunt viroid. HLVd was infectious through successive passage assays using a crude sap or total RNA extract derived from infected hemp. HLVd was also highly transmissible through hemp seeds at rates of 58 to 80%. Host range assays revealed new hosts for HLVd: tomato, cucumber, chrysanthemum, Nicotiana benthamiana, and Arabidopsis thaliana (Col-0). Sequence analysis of 77 isolates revealed only 3 parsimony-informative sites, while 10 sites were detected among all HLVd isolates available in the GenBank. The phylogenetic relationship among HLVd isolates allowed for inferring two major clades based on the genetic distance. Our findings facilitate further studies on host-viroid interaction and viroid management.
Collapse
Affiliation(s)
| | | | - Jeanmarie Verchot
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA; (O.O.A.); (S.M.Y.)
| |
Collapse
|
5
|
Yue D, Li R, Zhang J, Chen Y, Palmer-Young EC, Huang S, Huang WF. A DNA Plasmid-Based Approach for Efficient Synthesis of Sacbrood Virus Infectious Clones within Host Cells. Viruses 2023; 15:1866. [PMID: 37766273 PMCID: PMC10537335 DOI: 10.3390/v15091866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
RNA viruses are often cited as a significant factor affecting the populations of both domestic honey bees and wild pollinators. To expedite the development of effective countermeasures against these viruses, a more comprehensive understanding of virus biology necessitates extensive collaboration among scientists from diverse research fields. While the infectious virus clone is a robust tool for studying virus diseases, the current methods for synthesizing infectious clones of bee-infecting RNA viruses entail the in vitro transcription of the viral genome RNA in 8-10 kb, presenting challenges in reproducibility and distribution. This article reports on the synthesis of an infectious clone of the Chinese variant sacbrood virus (SBV) using a DNA plasmid containing an Autographa californica multiple nucleopolyhedrovirus (AcMNPV) immediate-early protein (IE1) promoter to trigger transcription of the downstream viral genome within hosts. The results demonstrate that the IE1-SBV plasmid can synthesize SBV clones in a widely used lepidopteran immortal cell line (Sf9) and honey bee pupae. Furthermore, the negative strand of the clone was detected in both Sf9 cells and honey bee pupae, indicating active infection and replication. However, the transfection of Sf9 cells was observed in only a limited proportion (less than 10%) of the cells, and the infection did not appear to spread to adjacent cells or form infective virions. The injection of honey bee pupae with 2500 ng of the IE1-SBV plasmid resulted in high infection rates in Apis cerana pupae but low rates in A. mellifera pupae, although the dosage was comparatively high compared with other studies using in vitro transcribed viral RNA. Our findings suggest that the synthesis of bee-infecting RNA viruses using DNA plasmids is feasible, albeit requiring additional optimization. However, this method holds substantial potential for facilitating the production of clones with various sequence modifications, enabling the exploration of viral gene functions and biology. The ease of distributing infectious clones in DNA plasmid form may foster collaboration among scientists in applying the clone to bee biology, ecology, and behavior, ultimately offering a comprehensive approach to managing virus diseases in the future.
Collapse
Affiliation(s)
- Dandan Yue
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Y.); (R.L.)
| | - Runlin Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Y.); (R.L.)
| | - Jikailang Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Y.); (R.L.)
| | - Yanping Chen
- Bee Research Laboratory, Agriculture Research Service, USDA, Beltsville, MD 20705, USA
| | - Evan C. Palmer-Young
- Bee Research Laboratory, Agriculture Research Service, USDA, Beltsville, MD 20705, USA
| | - Shaokang Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Y.); (R.L.)
- Honeybee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Wei-Fone Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Y.); (R.L.)
- Bee Research Laboratory, Agriculture Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
6
|
Human rhinoviruses prevailed among children in the setting of wearing face masks in Shanghai, 2020. BMC Infect Dis 2022; 22:253. [PMID: 35287614 PMCID: PMC8919361 DOI: 10.1186/s12879-022-07225-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/28/2022] [Indexed: 12/29/2022] Open
Abstract
Background Human rhinovirus (HRV) is the predominant etiological agent of the common cold in children and adults. A recent study showed that the inhibitory effect of face masks on viral shedding of HRV was less prominent than that on other respiratory viruses. Considering that most Chinese people have worn face masks in public area since the outbreak of coronavirus disease 2019, we aimed to find out whether HRV prevailed among children in 2020 and demonstrate the details of the epidemiological features of HRV under such a special circumstance. Methods We summarized the incidences of various respiratory virus infections in patients who visited the Children’s Hospital of Fudan University during 2018–2020, and genotyped HRV positive nasopharyngeal specimens collected from 316 inpatients and 72 outpatients that visited the hospital in 2020. Results There was a major prevalence of HRV among children in the latter half of 2020, with a clear seasonality that HRV-As prevailed in summer while HRV-Cs in autumn. HRV-As were more prone to cause severe lower respiratory tract infections (LRTI), while HRV-Cs were closely associated with childhood wheezing. The predominant genotypes were A11, A28, A47, A82, A101, C40 and C43. Notably, A21, A82 and A101 took up larger proportions in severe cases than in non-severe cases. Conclusions Our findings described a major prevalence of HRVs among children in 2020, which highlight the unique transmitting pattern of HRV and help to narrow the targets for antiviral strategies.
Collapse
|