1
|
Kim M, Jung HY, Kim B, Jo C. Laminin as a Key Extracellular Matrix for Proliferation, Differentiation, and Maturation of Porcine Muscle Stem Cell Cultivation. Food Sci Anim Resour 2024; 44:710-722. [PMID: 38765289 PMCID: PMC11097016 DOI: 10.5851/kosfa.2024.e27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 05/21/2024] Open
Abstract
Extracellular matrix (ECM) proteins play a crucial role in culturing muscle stem cells (MuSCs). However, there is a lack of extensive research on how each of these proteins influences proliferation and differentiation of MuSCs from livestock animals. Therefore, we investigated the effects of various ECM coatings-collagen, fibronectin, gelatin, and laminin-on the proliferation, differentiation, and maturation of porcine MuSCs. Porcine MuSCs, isolated from 14-day-old Berkshire piglets, were cultured on ECM-coated plates, undergoing three days of proliferation followed by three days of differentiation. MuSCs on laminin showed higher proliferation rate than others (p<0.05). There was no significant difference in the mRNA expression levels of PAX7, MYF5, and MYOD among MuSCs on laminin, collagen, and fibronectin (p>0.05). During the differentiation period, MuSCs cultured on laminin exhibited a significantly higher differentiation rate, resulting in thicker myotubes compared to those on other ECMs (p<0.05). Also, MuSCs on laminin showed higher expression of mRNA related with maturated muscle fiber such as MYH1 and MYH4 corresponding to muscle fiber type IIx and muscle fiber type IIb, respectively, compared with MuSCs on other ECM coatings (p<0.05). In summary, our comparison of ECMs revealed that laminin significantly enhances MuSC proliferation and differentiation, outperforming other ECMs. Specifically, muscle fibers cultured on laminin exhibited a more mature phenotype. These findings underscore laminin's potential to advance in vitro muscle research and cultured meat production, highlighting its role in supporting rapid cell proliferation, higher differentiation rates, and the development of mature muscle fibers.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyun Young Jung
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Beomjun Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
2
|
Sahota VK, Stone A, Woodling NS, Spiers JG, Steinert JR, Partridge L, Augustin H. Plum modulates Myoglianin and regulates synaptic function in D. melanogaster. Open Biol 2023; 13:230171. [PMID: 37699519 PMCID: PMC10497343 DOI: 10.1098/rsob.230171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Alterations in the neuromuscular system underlie several neuromuscular diseases and play critical roles in the development of sarcopenia, the age-related loss of muscle mass and function. Mammalian Myostatin (MST) and GDF11, members of the TGF-β superfamily of growth factors, are powerful regulators of muscle size in both model organisms and humans. Myoglianin (MYO), the Drosophila homologue of MST and GDF11, is a strong inhibitor of synaptic function and structure at the neuromuscular junction in flies. Here, we identified Plum, a transmembrane cell surface protein, as a modulator of MYO function in the larval neuromuscular system. Reduction of Plum in the larval body-wall muscles abolishes the previously demonstrated positive effect of attenuated MYO signalling on both muscle size and neuromuscular junction structure and function. In addition, downregulation of Plum on its own results in decreased synaptic strength and body weight, classifying Plum as a (novel) regulator of neuromuscular function and body (muscle) size. These findings offer new insights into possible regulatory mechanisms behind ageing- and disease-related neuromuscular dysfunctions in humans and identify potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Virender K. Sahota
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Aelfwin Stone
- Faculty of Medicine & Health Sciences, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Nathaniel S. Woodling
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Jereme G. Spiers
- Faculty of Medicine & Health Sciences, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Joern R. Steinert
- Faculty of Medicine & Health Sciences, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Linda Partridge
- Institute of Healthy Ageing, and GEE, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne 50931, Germany
| | - Hrvoje Augustin
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- Institute of Healthy Ageing, and GEE, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne 50931, Germany
| |
Collapse
|
3
|
Enhanced Muscle Fibers of Epinephelus coioides by Myostatin Autologous Nucleic Acid Vaccine. Int J Mol Sci 2022; 23:ijms23136997. [PMID: 35805999 PMCID: PMC9266527 DOI: 10.3390/ijms23136997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Epinephelus coioides is a fish species with high economic value due to its delicious meat, high protein content, and rich fatty acid nutrition. It has become a high-economic fish in southern parts of China and some other Southeast Asian countries. In this study, the myostatin nucleic acid vaccine was constructed and used to immunize E. coioides. The results from body length and weight measurements indicated the myostatin nucleic acid vaccine promoted E. coioides growth performance by increasing muscle fiber size. The results from RT-qPCR analysis showed that myostatin nucleic acid vaccine upregulated the expression of myod, myog and p21 mRNA, downregulated the expression of smad3 and mrf4 mRNA. This preliminary study is the first report that explored the role of myostatin in E. coioides and showed positive effects of autologous nucleic acid vaccine on the muscle growth of E. coioides. Further experiments with increased numbers of animals and different doses are needed for its application to E. coiodes aquaculture production.
Collapse
|
4
|
EDMD-Causing Emerin Mutant Myogenic Progenitors Exhibit Impaired Differentiation Using Similar Mechanisms. Cells 2020; 9:cells9061463. [PMID: 32549231 PMCID: PMC7349064 DOI: 10.3390/cells9061463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022] Open
Abstract
Mutations in the gene encoding emerin (EMD) cause Emery–Dreifuss muscular dystrophy (EDMD1), an inherited disorder characterized by progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. The skeletal muscle defects seen in EDMD are caused by failure of muscle stem cells to differentiate and regenerate the damaged muscle. However, the underlying mechanisms remain poorly understood. Most EDMD1 patients harbor nonsense mutations and have no detectable emerin protein. There are three EDMD-causing emerin mutants (S54F, Q133H, and Δ95–99) that localize correctly to the nuclear envelope and are expressed at wildtype levels. We hypothesized these emerin mutants would share in the disruption of key molecular pathways involved in myogenic differentiation. We generated myogenic progenitors expressing wildtype emerin and each EDMD1-causing emerin mutation (S54F, Q133H, Δ95–99) in an emerin-null (EMD−/y) background. S54F, Q133H, and Δ95–99 failed to rescue EMD−/y myogenic differentiation, while wildtype emerin efficiently rescued differentiation. RNA sequencing was done to identify pathways and networks important for emerin regulation of myogenic differentiation. This analysis significantly reduced the number of pathways implicated in EDMD1 muscle pathogenesis.
Collapse
|
5
|
Grzelkowska-Kowalczyk K, Tokarska J, Grabiec K, Gajewska M, Milewska M, Błaszczyk M. Tumor necrosis factor-α alters integrins and metalloprotease ADAM12 levels and signaling in differentiating myoblasts. Pol J Vet Sci 2016; 19:253-9. [PMID: 27487498 DOI: 10.1515/pjvs-2016-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The extracellular matrix (ECM) is important in the regulation of myogenesis. We hypothesized that tumor necrosis factor-α (TNF-α) modifies ECM during differentiation of mouse C2C12 myoblasts. Exogenous TNF-α (1 ng/ml) stimulated myoblast fusion on the 3rd day (by 160% vs control) but not on the 5th day of myogenesis. The level of integrin α5 was significantly augmented by TNF-α during 5 day-differentiation; however, integrin β1 was higher than control only on the 3rd day of cytokine treatment. Both the abundance of integrin α5 bound to actin and the level of integrin β1 complexed with integrin α5 increased in the presence of TNF-α, especially on the 3rd day of differentiation. Similarly, the stimulatory effects of TNF-α on integrin α3, metalloprotease ADAM12 and kinases related to integrins, FAK and ILK, were limited to the 3rd day of differentiation. We concluded that TNF-α-induced changes in ECM components in differentiating myogenic cells, i.e. i) increased expression of integrin α5, β1, α3, and metalloprotease ADAM12, ii) enhanced formation of α5β1 integrin receptors and interaction of integrin α5-cytoskeleton, and iii) increased expression of kinases associated with integrin signaling, FAK and ILK, were temporarily associated with the onset of myocyte fusion.
Collapse
|
6
|
Sharma M, McFarlane C, Kambadur R, Kukreti H, Bonala S, Srinivasan S. Myostatin: expanding horizons. IUBMB Life 2015; 67:589-600. [PMID: 26305594 DOI: 10.1002/iub.1392] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 05/29/2015] [Indexed: 12/13/2022]
Abstract
Myostatin is a secreted growth and differentiation factor that belongs to the TGF-β superfamily. Myostatin is predominantly synthesized and expressed in skeletal muscle and thus exerts a huge impact on muscle growth and function. In keeping with its negative role in myogenesis, myostatin expression is tightly regulated at several levels including epigenetic, transcriptional, post-transcriptional, and post-translational. New revelations regarding myostatin regulation also offer mechanisms that could be exploited for developing myostatin antagonists. Increasingly, it is becoming clearer that besides its conventional role in muscle, myostatin plays a critical role in metabolism. Hence, molecular mechanisms by which myostatin regulates several key metabolic processes need to be further explored.
Collapse
Affiliation(s)
- Mridula Sharma
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Department of Cell & Molecular Biology, Brenner Centre for Molecular Medicine, Singapore Institute of Clinical Sciences (SICS), Singapore
| | - Craig McFarlane
- Department of Cell & Molecular Biology, Brenner Centre for Molecular Medicine, Singapore Institute of Clinical Sciences (SICS), Singapore
| | - Ravi Kambadur
- Department of Cell & Molecular Biology, Brenner Centre for Molecular Medicine, Singapore Institute of Clinical Sciences (SICS), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Himani Kukreti
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Sabeera Bonala
- Department of Cell & Molecular Biology, Brenner Centre for Molecular Medicine, Singapore Institute of Clinical Sciences (SICS), Singapore
| | - Shruti Srinivasan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| |
Collapse
|
7
|
Nishimura T. Role of extracellular matrix in development of skeletal muscle and postmortem aging of meat. Meat Sci 2015; 109:48-55. [PMID: 26141816 DOI: 10.1016/j.meatsci.2015.05.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 01/05/2023]
Abstract
The integrity of skeletal muscle is maintained by the intramuscular connective tissues (IMCTs) that are composed of extracellular matrix (ECM) molecules such as collagens, proteoglycans, and glycoproteins. The ECM plays an important role not only in providing biomechanical strength of the IMCT, but also in regulating muscle cell behavior. Some ECM molecules, such as decorin and laminin, modulate the activity of myostatin that regulates skeletal muscle mass. Furthermore, it has been shown that decorin activates Akt downstream of insulin-like growth factor-I receptor (IGF-IR) and enhances the differentiation of myogenic cells, suggesting that decorin acts as a signaling molecule to myogenic cells. With animal growth, the structural integrity of IMCT increases; collagen fibrils within the endomysium associate more closely with each other, and the collagen fibers in the perimysium become increasingly thick and their wavy pattern grows more regular. These changes increase the mechanical strength of IMCT, contributing to the toughening of meat. However, in highly marbled beef cattle like Wagyu, intramuscular fat deposits mainly in the perimysium between muscle fiber bundles during the fattening period. The development of adipose tissues appears to disorganize the structure of IMCT and contributes to the tenderness of Wagyu beef. The IMCT was considered to be rather immutable compared to myofibrils during postmortem aging of meat. However, several studies have shown that collagen networks in the IMCT are disintegrated and proteoglycan components are degraded during postmortem aging. These changes in ECM appear to reduce the mechanical strength of IMCT and contribute to the tenderness of uncooked meat or cooked meat at low temperature. Thus, the ECM plays a multifunctional role in skeletal muscle development and postmortem aging of meat.
Collapse
Affiliation(s)
- Takanori Nishimura
- Muscle Biology and Meat Science Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
8
|
The effects of exogenous cortisol on myostatin transcription in rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol A Mol Integr Physiol 2014; 175:57-63. [PMID: 24875565 DOI: 10.1016/j.cbpa.2014.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/16/2014] [Accepted: 05/18/2014] [Indexed: 11/23/2022]
Abstract
Glucocorticoids (GCs) strongly regulate myostatin expression in mammals via glucocorticoid response elements (GREs), and bioinformatics methods suggest that this regulatory mechanism is conserved among many vertebrates. However, the multiple myostatin genes found in some fishes may be an exception. In silico promoter analyses of the three putative rainbow trout (Oncorhynchus mykiss) myostatin promoters have failed to identify putative GREs, suggesting a divergence in myostatin function. Therefore, we hypothesized that myostatin mRNA expression is not regulated by glucocorticoids in rainbow trout. In this study, both juvenile rainbow trout and primary trout myoblasts were treated with cortisol to examine the effects on myostatin mRNA expression. Results suggest that exogenous cortisol does not regulate myostatin-1a and -1b expression in vivo, as myostatin mRNA levels were not significantly affected by cortisol treatment in either red or white muscle tissue. In red muscle, myostatin-2a levels were significantly elevated in the cortisol treatment group relative to the control, but not the vehicle control, at both 12 h and 24 h post-injection. As such, it is unclear if cortisol was acting alone or in combination with the vehicle. Cortisol increased myostatin-1b expression in a dose-dependent manner in vitro. Further work is needed to determine if this response is the direct result of cortisol acting on the myostatin-1b promoter or through an alternative mechanism. These results suggest that regulation of myostatin by cortisol may not be as highly conserved as previously thought and support previous work that describes potential functional divergence of the multiple myostatin genes in fishes.
Collapse
|